Skip to main content

Abstract

The field of microfluidics has become one of the most dynamic disciplines of microtechnology. On the one hand, microfluidics offers the mere benefits of miniaturization, enabling many fields of application, in particular where small liquid volumes, transportable and cheap devices, or integrated process control are beneficial. On the other hand, microfluidics provides an elegant and often exclusive access to the nanoworld of biomolecular chemistry and cell handling, leveraging many novel biotechnological applications. This chapter first outlines the fluidic properties and working principles underlying microfluidic devices, such as diffusion, heat transport, interfacial surface tension, and electrokinetic effects. It then introduces fabrication techniques and sketches microfluidic components for flow control, pumping, physical sensing, and dispensing and their applications in (bio-)analytical chemistry, drug discovery, and chemical process engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ducrée, H. Sandmaier, and W. Lang, “MEMS: from development to production,” Seisan-Kenkyu, 52(6):22–25 (2000)

    Google Scholar 

  2. Microfluidics Roadmap for the Life Sciences, J. Ducrée and R. Zengerls (eds.), Books-on-Demand GmbH, Norderstedt, ISBN 3-8334-0744-1, www.microfluidics-roadmap.com (2004)

    Google Scholar 

  3. A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors & Actuators B, 1(1–6):244–248 (1990)

    Article  Google Scholar 

  4. A. van den Berg and T. S. J. Lammerink, “Micro total analysis systems: microfluidic aspects, integration concept and applications,” in Microsystem Technology in Chemistry and Life Science, vol. 194, Springer, Berlin, Heidelberg, New York (1997), pp. 21–49

    Google Scholar 

  5. S. Shoji, “Micro total analysis system (μTAS),” Electronics & Communications in Japan—Part 2: Electronics, 82(2):21–29 (1999)

    Article  Google Scholar 

  6. D. Figeys and D. Pinto, “Lab-on-a-chip: a revolution in biological and medical sciences,” Anal Chem., 72(9):330–335A (2000)

    Article  Google Scholar 

  7. Cepheid, www.cepheid.com, August 2002

    Google Scholar 

  8. M. Schena, D. Shalon, R. W. Davis, and R O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, 270(5235):467–470 (1995)

    Article  Google Scholar 

  9. B. Lemieux, A. Aharoni, and M. Schena, “Overview of DNA chip technology,” Molecular Breeding, 4(4):277–289 (1998)

    Article  Google Scholar 

  10. P. K. Gupta, J. K. Roy, and M. Prasad, “DNA chips, microarray s and genomics,” Current ScL, 77(7):875–884 (1999)

    Google Scholar 

  11. J. G. Hacia, “Resequencing and mutational analysis using oligonucleotide microarrays,” Nature Genetics, 21:42–47 (1999)

    Article  Google Scholar 

  12. E. S. Lander, Array of hope,” Nature Genetics, 2V3-A (1999)

    Google Scholar 

  13. V. G. Cheung, M. Morley, F. Aguilar, A. Massimi, R. Kucherlapati, and G. Childs, “Making and reading microarrays,” Nature Genetics, 21:15–19 (1999)

    Article  Google Scholar 

  14. D. D. L. Bowtell, “Options available—from start to finish—for obtaining expression data by microarray,” Nature Genetics, 21:25–32 (1999)

    Article  Google Scholar 

  15. CM. Roth and M. L. Yarmush,“ Nucleic acid biotechnology,” Annu. Rev. Biomed. Eng., 1:265–297 (1999)

    Article  Google Scholar 

  16. Microarray Biochip Technology (M. Schena, ed.), Eaton Publishing (2000)

    Google Scholar 

  17. Affymetrix, www.affymetrix.com, August 2002

    Google Scholar 

  18. J. Ducrée and R. Zengerle, “Microfluidics—markets and technologies,” MST News, 05(02):8–10 (2002)

    Google Scholar 

  19. W. Ehrfeld, V. Hessel, and H. Löwe, Microreactors, New Technology for Modern Chemistry, Wiley/VCH, Weinheim, Germany (2000)

    Google Scholar 

  20. P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics—a review,” J. Micromech. Microeng., 3(4): 168–182 (1993)

    Article  Google Scholar 

  21. CM. Ho, “Fluidics—the link between micro and nano sciences and technologies,” in Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS’01), January 21–25, Interlaken, Switzerland (2001), pp. 375–384

    Google Scholar 

  22. J. Ducrée and R. Zengerle, Microfluidics, Springer, Berlin, Heidelberg, New York (2005)

    Google Scholar 

  23. M. Koch, A. Evans, and A. Brunnschweiler, Microfluidic Technology and Applications, Microtechnologies and Microsystems (series), RSP Research Studies Press Ltd., Baldock, Hertfordshire, England (2000)

    Google Scholar 

  24. myFluidix.com—Free Online Resources in Microfluidics, www.myfluidix.com, June 2003

    Google Scholar 

  25. Microfluidics Worldwide Information Service, www.microfluidics.de, August 2002

    Google Scholar 

  26. CFD Research Corporation, www.cfdrc.com, 2000

    Google Scholar 

  27. Coventor (formerly Microcosm Technologies), www.coventor.com, August 2002

    Google Scholar 

  28. FIDAP (CFDRC), www.cfdrc.com/software/fidap, October 2002

    Google Scholar 

  29. FLUENT, www.fluent. com, 2002

    Google Scholar 

  30. FEMLAB—Multiphysics in Matlab (comsol), www.femlab.com, 2002

    Google Scholar 

  31. Saber—Mixed-Signal Simulator, www.analogy. com, 2000

    Google Scholar 

  32. SPICE, bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE, August 2002

    Google Scholar 

  33. P. Wu and W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels for microminiature Joule-Thomson refrigerators,” Cryogenics, 23:273–277 (1983)

    Article  Google Scholar 

  34. P. Wu and W. A. Little, “Measurement of the heat transfer characteristics of gas flow in fine heat exchangers used for microminiature refrigerators,” Cryogenics, 24:415–20 (1984)

    Article  Google Scholar 

  35. G. Fuhr, T. Müller, T. Schnelle, R. Hagedorn, A. Voigt, S. Fiedler, W. M. Arnold, U. Zimmermann, B. Wagner, and A. Heuberger, “Radio-frequency microtools for particle and live cell manipulation,” Naturwissenschaften, 81(12):528–535 (1994)

    Article  Google Scholar 

  36. T. Schnelle, T. Müller, G. Gradl, S. G. Shirley, and G. Fuhr, “Dielectrophoretic manipulation of suspended submicron particles,” Electrophoresis, 21(1):66–73 (2000)

    Article  Google Scholar 

  37. J. M. Wilkinson, “Cost models for microsystem technology,” Micromachine Devices, 4(3): 1–3 (1999)

    MathSciNet  Google Scholar 

  38. M. Madou, Fundamentals of Microfabrication. CRC Press (1997)

    Google Scholar 

  39. M. Madou and J. Florkey, “From batch to continuous manufacturing of microbiomedical devices,” Chem. Rev., 100(7):2679–2692 (2000)

    Article  Google Scholar 

  40. W. Menz, Microsystem Technology, Wiley/VCH, Weinheim (2000)

    Book  Google Scholar 

  41. M. Bachman, Y.-M. Chiang, C. Y. Chu, and G. Li, “Laminated microfluidic structures using a micromolding technique,” in Proceedings of SPIE— Microfluidic Devices and Systems II, vol. 3877 (C. H. Ahn and A. B. Frazier, eds.), pp. 139–146 (1999)

    Google Scholar 

  42. J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch, and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production,” Appl. Surface Sei., 86:251–258 (1995)

    Article  Google Scholar 

  43. H. Becker and C. Gärtner, “Polymer microfabrication methods for microfluidic analytical applications,” Electrophoresis, 21(1): 12–26 (2000)

    Article  Google Scholar 

  44. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly (dimethylsiloxane),” Electrophoresis, 21(1):27–40 (2000)

    Article  Google Scholar 

  45. CMOLD, www.cmold. com, November 2002

    Google Scholar 

  46. Y. Fintschenko and A. van den Berg, “Silicon microtechnology and microstructures,” J. Chromatography A, 819(1—2):3—12 (1998)

    Google Scholar 

  47. J. H. Chan, A. T. Timperman, D. Qin, and R. Aebersold, “Microfabricated polymer devices for automated sample delivery of peptides for analysis by electrospray ionization tandem mass spectrometry,” Anal. Chem., 71:4437–4444 (1999)

    Article  Google Scholar 

  48. MGT Mikroglas Technik AG, Mainz, www.mikroglas.de, August 2002

    Google Scholar 

  49. S. Shoji, S. Nakagawa, and M. Esashi, “Micropump and sample-injector for integrated chemical analyzing systems,” Sensors & Actuators A, 21(1–3):189–192 (1990)

    Article  Google Scholar 

  50. H. T. G. van Lintel, F. C. M. van de Pol, and S. Bouwstra, “A piezoelectric micropump, based on micromachining of silicon,” Sensors & Actuators, 15(2): 153–167 (1988)

    Article  Google Scholar 

  51. X.-Q Wang and Y.-C Tai, “A normally closed in-channel micro check valve,” in Proceedings of the 13th Annual International Conference on Micro Electro Mechanical Systems (MEMS’2000), January 23–27, Miyazaki, Japan, IEEE, Piscataway, NJ (2000), pp. 68–71

    Google Scholar 

  52. R. Zengerle, A. Richter, and H. Sandmaier, “A micro membrane pump with electrostatic actuation,” in Proceedings of IEEE Micro Electro Mechanical Systems (MEMS’92), February 4–7, Travemünde, Germany (W. Benecke and H.-C. Petzold, eds.), IEEE (1992), pp. 19–24

    Google Scholar 

  53. E. Stemme and G. Stemme, “A valveless diffuser/nozzle-based fluid pump,” Sensors & Actuators A, 39(2): 159–167 (1993)

    Article  Google Scholar 

  54. T. Gerlach and H. Wurmus, “Working principle and performance of the dynamic micropump,” Sensors & Actuators A, 50(1–2): 135–140 (1995)

    Article  Google Scholar 

  55. A. Olsson, O. Larsson, J. Holm, L. Lundbladh, O. Ohman, and G. Stemme, “Valve-less diffuser micropumps fabricated using thermoplastic replication,” in Proceedings of the 10th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’97), January 26–30, Nagoya, Japan, IEEE, New York (1997), pp. 305–310

    Google Scholar 

  56. W. van der Wijngaart, H. Andersson, P. Enoksson, K. Noren, and G. Stemme, “The first self-priming and bi-directional valve-less diffuser micropump for both liquid and gas,” in Proceedings of the 13th IEEE Annual International Conference on Micro Electro Mechanical Systems (MEMS’2000), January 23–27, Miyazaki, Japan, IEEE, Piscataway, NJ (2000), pp. 674–679

    Google Scholar 

  57. Nikola Tesla, valvular conduit, U.S. patent no. 1,329,559, 1920

    Google Scholar 

  58. Fred Forster, lettuce.me.washington.edu/micropump, University of Washington, August 2002

    Google Scholar 

  59. M. R. McNeely, M. K. Spute, N. A. Tusneem, and A. R. Oliphant, “Hydrophobic microfluidics,” in Proceedings of SPIE—Microfluidic Devices and Systems II, vol. 3877 (C. H. Ahn and A. B. Frazier, eds.), pp. 210–220, (1999)

    Google Scholar 

  60. K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “Nanolitervolume discrete drop injection and pumping in microfabricated chemical analysis systems,” in Proceedings of the 8th Solid-State Sensor & Actuator Workshop, June 8–11, Hilton Head Island, SC (K. H. Chau and P. J. French, eds.), pp. 346–349 (1998)

    Google Scholar 

  61. K. Hosokawa, T. Fujii, and T. Endo, “Handling of small volume droplets using hydrophobic microcapillary vent,” Trans. Inst. Elect. Eng. Japan, A119-EE(10):470–475 (1999)

    Google Scholar 

  62. E. T. Lagally, P. C. Simpson, and R. A. Mathies, “Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system,” Sensors & Actuators B, 63:138–146 (2000)

    Article  Google Scholar 

  63. D. K. Jones, C. H. Mastrangelo, M. A. Burns, and D. T. Burke, “Selective hydrophobic and hydrophilic texturing of surfaces using photolithographic photodeposition of polymers [for microfluidic sample control],” in Proceedings of SPIE—Microfluidic Devices and Systems, vol. 3515 (A. B. Frazier and C. H. Ahn, eds.), pp. 136–143 (1998)

    Google Scholar 

  64. M. J. Zdeblick, R. Anderson, J. Jankowski, B. Kline-Schoder, L. Christel, R. Miles, and W. Weber, “Thermopneumatically actuated microvalves and integrated electro-fluidic circuits,“ in Proceedings of the 6th Solid-State Sensor & Actuator Workshop, June 13–16, Hilton Head Island, SC, Transducer Res. Found., Cleveland Heights, OH (1994), pp. 251–255

    Google Scholar 

  65. H. Jerman. “Electrically activated normally closed diaphragm valves,” J. Micromech. Microeng., 4(4):210–216 (1994)

    Article  Google Scholar 

  66. P. W. Barth, C. C. Beatty, L. A. Field, J. W. Baker, and G. B. Gordon, “A robust normally closed silicon microvalve,” in Proceedings of the 6 th Solid-State Sensor & Actuator Workshop, June 13–16, Hilton Head Island, SC (1994), pp. 248–250

    Google Scholar 

  67. S. Messner, M. Müller, V. Burger, J. Schaible, H. Sandmaier, and R. Zengerle, “A normally-closed, bimetallically actuated three-way microvalve for pneumatic applications,” in Proceedings of the 11th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’98), January 25–29, Heidelberg, Germany, IEEE, New York (1998), pp. 40–44

    Google Scholar 

  68. R. Zengerle, “Microfluidics,” in Proceedings of MME’98—Micromechanics Europe, Ulvik, Norway (1998), pp. 111–122

    Google Scholar 

  69. M. Dunbar, “Electronic pressure regulators using micromachined silicon pressure sensors and silicon microvalves,” in Proceedings 7th International Conference for Sensors Transducers and Systems (SENSOR 95), pp. 381–385, (1995)

    Google Scholar 

  70. M. W. Hamberg, C. Neagu, J. G. E. Gardeniers, D. J. Ijntema, and M. Elwenspoek, “An electrochemical micro actuator,” in Proceedings of IEEE Micro Electro Mechanical Systems (MEMS’ 95), January 29–February 2, Amsterdam, The Netherlands (1995), pp. 106–110

    Google Scholar 

  71. S. Böhm, W. Olthuis, and P. Bergveld, “A bi-directional electrochemically driven micro liquid dosing system with integrated sensor/actuator electrodes,” in Proceedings of the 13th IEEE Annual International Conference on Micro Electro Mechanical Systems (MEMS’2000), January 23–27, Miyazaki, Japan, IEEE, Piscataway, NJ (2000), pp. 92–95

    Google Scholar 

  72. D. Eddington, R. Lui, J. Moore, and D. Beebe, “An organic self-regulating microfluidic system,” Lab on a Chip, 1(2):96–99 (2001)

    Article  Google Scholar 

  73. S. Messner, M. Müller, J. Schaible, and R. Zengerle, “A modular housing concept for pneumatic microsystems,” in Proceedings of the 11th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’98), January 25–29, Heidelberg, Germany, VDE Verlag, Berlin, Germany (1998), pp. 615–620

    Google Scholar 

  74. J. G. Smits and N. V. Vitafin, Piezo-electrical micropump, patents EP0134614 and NL8302860, 1985

    Google Scholar 

  75. R. Zengerle, S. Kluge, J. Richter, and A. Richter, “A bidirectional silicon micropump,” in Proceedings of IEEE Micro Electro Mechanical Systems (MEMS’95), January 29–February 2, Amsterdam, The Netherlands, IEEE, New York (1995), pp. 19–24

    Google Scholar 

  76. D. J. Harrison, K. Fluri, K. Seiler, F. Zhonghui, C. S. Effenhauser, and A. Manz, “Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip,” Science, 261(5123):895–897 (1993)

    Article  Google Scholar 

  77. A. Manz, C. S. Effenhauser, N. Burggraf, D. J. Harrison, K. Seiler, and K. Fluri, “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems,” J. Micromech. Microeng., 4(4):257–265 (1994)

    Article  Google Scholar 

  78. C. T. Culbertson, R. S. Ramsey, and J. M. Ramsey, “Electroosmotically induced hydraulic pumping on microchips: differential ion transport,” Anal. Chem., 72:2285–2291 (2000)

    Article  Google Scholar 

  79. F. C. M. van de Pol, H. T. G. van Lintel, M. Elwenspoek, and J. H. J. Fluitman, “A thermopneumatic micropump based on micro-engineering techniques,” Sensors & Actuators A, 21(1–3): 198–202 (1990)

    Google Scholar 

  80. K. P. Kämper, J. Döpper, W. Ehrfeld, and S. Oberbeck, “A self-filling low-cost membrane micropump,” in Proceedings of the 11th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’98), January 25–29, Heidelberg, Germany, IEEE, New York (1998), pp. 432–37

    Google Scholar 

  81. R. Linnemann, P. Woias, C. D. Senfft, and J. A. Ditterich, “A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases, in Proceedings of the 11th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’98), January 25–29, Heidelberg, Germany, IEEE, New York (1998), pp. 532–537

    Google Scholar 

  82. J. G. Smits, “Piezoelectric micropump with three valves working peristaltically (for insulin delivery),” Sensors & Actuators A, 21(1–3): 203–206 (1990)

    Article  Google Scholar 

  83. J. M. Crowley, G. Wright, and J. C. Chato, “Selecting a working fluid to increase the efficiency and flow rate of an EHD pump,” in Conference Record of the 1987 IEEE Industry Applications Society Annual Meeting, vol. 2, IEEE, New York (1987), pp. 1433–1438

    Google Scholar 

  84. S. F. Bart, L. S. Tavrow, M. Mehregany, and J. H. Lang, “Microfabricated electrohydrodynamic pumps,” Sensors & Actuators A, 21(1–3): 193–197 (1990)

    Article  Google Scholar 

  85. A. Richter, “An electrohydrodynamic micropump,” in Actuator 90, Proceedings of 2nd International Technology-Transfer Congress, Bremen, Germany (1990), pp. 172–177

    Google Scholar 

  86. G. Fuhr, R. Hagedorn, T. Müller, W. Benecke, and B. Wagner, “Pumping of water solutions in microfabricated electrohydrodynamic systems, in Proceedings of IEEE Micro Electro Mechanical Systems (MEMS’92), February 4–7, Travemünde, Germany, IEEE, New York (1992), pp. 25–30

    Google Scholar 

  87. D. C. Duffy, H. L. Gillis, J. Lin, N. F. Sheppard, and G. J. Kellogg, “Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays,” Anal. Chem., 71(20):4669–4678 (1999)

    Article  Google Scholar 

  88. G. Ekstrand, C. Holmquist, A. Edman Örlefors, B. Hellman, A. Larsson, and P. Andersson, “Microfluidics in a rotating CD,” in Proceedings of the Micro Total Analysis Systems Symposium (μTAS 2000), May 14–18, Enschede, The Netherlands (A. van den Berg, W. Olthuis, and P. Bergveld, eds.), Kluwer Academic, The Netherlands (2000), pp. 311–314

    Google Scholar 

  89. HNP Mikrosysterne GmbH, www.hnp-mikwsysteme.de. Parchim (Germany), August 2002

    Google Scholar 

  90. R. M. Moroney, R. M. White, and R. T. Howe, “Ultrasonically induced microtransport,” in Proceedings of IEEE Micro Electro Mechanical Systems (MEMS’91) January 30–February 2, Nara, Japan, IEEE (1991), pp. 277–282

    Google Scholar 

  91. K. Ikekame, K.-H. Hashimoto, and M. Yamaguchi, “Micro-actuators using acoustic streaming induced by high-frequency ultrasonic waves,” Trans. Inst. Elect. Eng. Japan, A118-E(7–8):347–351 (1998)

    Google Scholar 

  92. S. Shoji, “Fluids for sensor systems,“ in Microsystem Technology in Chemistry and Life Sciences (A. Manz and H. Becker, eds.), Springer, Berlin, Heidelberg, New York (1997), pp. 163–188

    Google Scholar 

  93. G. A. Urban and G. Jobst, “Sensor systems,“ in Microsystem Technology in Chemistry and Life Sciences (A. Manz and H. Becker, eds.), Springer, Berlin, Heidelberg, New York (1998), pp. 189–213

    Chapter  Google Scholar 

  94. S. Middelhoek and S. A. Audet, Silicon Sensors, Academic Press Ltd., London, UK (1989)

    Google Scholar 

  95. M. A. Boillat, B. van der Schoot, P. Arquint, and N. F. de Rooij, “Controlled liquid dosing in microinstruments,” in Proceedings of SPIE—Microfluidic Devices & Systems II, August 1999, vol. 3877 (C. H. Ahn and A. B. Frazier, eds.), pp. 20–27

    Google Scholar 

  96. M. Ashauer, H. Glosch, H. Ashauer, H. Sandmaier, and W. Lang, “Liquid massflow sensor using dynamic pressure detection,” in Micro-Electro-Mechanical Systems (MEMS)—1998, ASME International Mechanical Engineering Congress and Exposition (L. Lin, F. K. Forster, N. R. Aluru, and X. Zhang, eds.), New York (1998), pp. 421–425

    Google Scholar 

  97. HSG-IMIT, www.hsg-imit.de, August 2002

    Google Scholar 

  98. M. Elwenspoek, T. S. J. Lammerink, R. Miyake, and J. H. J. Fluitman, “Towards integrated microliquid handling systems,” J. Micromech. Microeng., 4(4):227–245 (1994)

    Article  Google Scholar 

  99. T. Ebefors, E. Kalvesten, and G. Stemme, “Three dimensional silicon triplehot-wire anemometer based on polyimide joints,” in Proceedings of the 11th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’98), January 25–29, Heidelberg, Germany, IEEE, New York (1998), pp. 93–98

    Google Scholar 

  100. M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sensors & Actuators A, 73(1–2):7–13 (1999)

    Article  Google Scholar 

  101. S. Shoji, M. Esashi, and T. Matsuo, “Prototype miniature blood gas analyser fabricated on a silicon wafer,” Sensors & Actuators, 14(2): 101–107 (1988)

    Article  Google Scholar 

  102. P. Bergveld, “Exploiting the dynamic properties of FET-based chemical sensors,” J. Phys. E, 22(9):678–683 (1989)

    Article  Google Scholar 

  103. A. van den Berg, P. Bergveld, D. N. Reinhoudt, M. Elwenspoek, and J. H. J. Fluitman, “Miniaturized chemical analysis systems,” in 5th International Symposium on Micro Machine and Human Science, IEEE, New York (1994), pp. 181–184

    Chapter  Google Scholar 

  104. P. Bergveld, “The future of biosensors,” Sensors & Actuators A, 56(1–2):65–73 (1996)

    Article  Google Scholar 

  105. P. Koltay, J. Ducrée, and R. Zengerle, “Nanoliter and picoliter liquid handling,” in Micro Total Analysis Systems (A. van den Berg and E. Oosterbroek, eds.), Elsevier Science, Amsterdam, The Netherlands (2003), pp. 151–171

    Google Scholar 

  106. J. Driscoll, R. Delmendo, R. Papen, and D. Sawutz, “Multi PROBE nL complements drug discovery assay miniaturization,” J. Biomolecular Screening, 3(3):237–239 (1998)

    Article  Google Scholar 

  107. GeSiM, Gesellschaft für Silizium-Mikrosysterne mbH, www.gesim.de, August 2002

    Google Scholar 

  108. Microdrop—Gesellschaft für Mikrodosiersysterne mbH, www.microdrop.de, August 2002

    Google Scholar 

  109. J. Comley, “Nanoliter dispensing—on the point of delivery,” Drug Discovery World, 3(3):33–44 (2002)

    Google Scholar 

  110. P. Koltay, G. Birkle, R. Steger, H. Sandmaier, and R. Zengerle, “Highly parallel and accurate nanoliter dispenser for high-throughput synthesis of chemical compounds,” in Proceedings ofiMEMS (2000)

    Google Scholar 

  111. Packard Instrument Company, www.lifesciences.perkinelmer.com, August 2002

    Google Scholar 

  112. D. Maillefer, H. van Lintel, G. Rey-Mermet, and R. Hirschi, “A high-performance silicon micropump for an implantable drug delivery system,” in Proceedings of the 12th IEEE Annual International Conference on Micro Electro Mechanical Systems (MEMS’99), January 17–21 Orlando, Florida, IEEE (1999), pp. 541–546

    Google Scholar 

  113. R. P. Ekins, “Ligand assays: from electrophoresis to miniaturized microarrays,” Clinical Chem., 44(9):2015–2030 (1998)

    Google Scholar 

  114. R. Ekins and F. W. Chu, “Microarrays: their origins and applications,” Trends in biotechnology, 17(6):217–218 (1999)

    Article  Google Scholar 

  115. D. Shalon, S. J. Smith, and P. O. Brown, “A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization,” Genome Research, 6:639–645 (1996)

    Article  Google Scholar 

  116. Stanford Tip Gallery, cmgm.stanford.edu/pbrown/mguide/tips.html, The Brown Lab, August 2002

    Google Scholar 

  117. J. Ducrée, H. Gruhler, N. Hey, M. Müller, S. Békési, M. Freygang, H. Sandmaier, and R. Zengerle, “TopSpot—a new method for the fabrication of microarrays,” in Proceedings of the 13th IEEE Annual International Conference on Micro Electro Mechanical Systems (MEMS’2000), January 23–27, Miyazaki, Japan, IEEE (2000), pp. 317–322

    Google Scholar 

  118. J. Ducrée, B. de Heij, H. Sandmaier, and R. Zengerle, “Fabrication of microarrays on an industrial scale with TopSpot,” MST News, 4:22–23 (2000)

    Google Scholar 

  119. Lab for MEMS Applications, www.imtek.de/anwendungen/english/, IMTEK, August 2002

    Google Scholar 

  120. R. C. Anderson, G. McGall, and R. J. Lipshutz, “Polynucleotide arrays for genetic sequence analysis,” in Microsystem Technology in Chemistry and Life Science, vol. 194, Springer, Berlin, Heidelberg (1997), pp. 117–129

    Google Scholar 

  121. R. J. Lipshutz, S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart, “High density synthetic oligonucleotide arrays,” Nature Genetics, 21:20–24 (1999)

    Article  Google Scholar 

  122. Luminex Corporation, www.luminexcorp.com, August 2002

    Google Scholar 

  123. PharmaSeq, www.pharmaseq.com, August 2002

    Google Scholar 

  124. Illumina, Inc., www.illumina.com, August 2002

    Google Scholar 

  125. Proceedings of the 3rd International Conference on Microreaction Technology (IMRET 3), April 18–21, Frankfurt, Germany (W. Ehrfeld, ed.), Springer (1999)

    Google Scholar 

  126. C. Erbacher, F. G. Bessoth, M. Busch, E. Verpoorte, and A. Manz, “Towards integrated continuous-flow chemical reactors,” Microchimica Acta, 131(1/2):19–24 (1999)

    Article  Google Scholar 

  127. F. G. Bessoth, A. J. de Mello, and A. Manz, “Microstructure for efficient continuous flow mixing,” Analytical Commun., 36(6):213–215 (1999)

    Article  Google Scholar 

  128. W. Ehrfeld, K. Golbig, V. Hessel, H. Löwe, and T. Richter, “Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays,” Ind. Eng. Chem. Res., 38(3): 1075–1082 (1999)

    Article  Google Scholar 

  129. J. Evans, D. Liepmann, and A. P. Pisano, “Planar laminar mixer (MEMS fluid processing system),” in Proceedings of the 10th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’97), January 26–30, Najoya, Japan, IEEE, New York (1997), pp. 96–101

    Google Scholar 

  130. M. Koch, D. Chatelain, A. G. R. Evans, and A. Brunnschweiler, “Two simple micromixers, based on silicon,” J. Micromech. Microeng., 8:123–126 (1998)

    Article  Google Scholar 

  131. IMM—Institut für MikroStrukturtechnik Mainz, www.imm-mainz.de, August 2002

    Google Scholar 

  132. N. Schwesinger, T. Frank, and H. Wurmus, “A modular microfluid system with an integrated micromixer,” J. Micromech. Microeng., 6(1):99–102 (1996)

    Article  Google Scholar 

  133. T. S. Ravigururajan, “Impact of channel geometry on two-phase flow heat transfer characteristics of refrigerants in microchannel heat exchangers,” Journal of Heat Transfer—Transactions of the ASME, 120(2):485–504 (1998)

    Article  Google Scholar 

  134. D. Hönicke, “Microchemical reactors for heterogeneously catalyzed reactions,” Studies in Surface Science & Catalysis, 122:47–62 (1999)

    Article  Google Scholar 

  135. FZ Karlsruhe, Projekt Mikrosystemtechnik, www.fzk.de/pmt, August 2002

    Google Scholar 

  136. W. Bier, W. Keller, W. Linder, D. Seidel, and K. Schubert, “Manufacturing and testing of compact micro heat exchangers with high volumetric heat transfer coefficients,” ASME DSC, 19:189–197)(1990)

    Google Scholar 

  137. F. Jones, A. Kuppusamy, and A.-P. Zheng, “Dehydrogenation of cyclohexane to benzene in microreactors,” in Proceedings of SPIE—Microfluidic Devices and Systems II, vol. 3877 (C. H. Ahn and A. B. Frazier, eds.), pp. 160–168 (1999)

    Google Scholar 

  138. E. L’Hostis, P. E. Michel, G. C. Fiaccabrino, D. J. Strike, N. F. de Rooij, and M. Koudelka-Hep, “Microreactor and electrochemical detectors fabricated using Si and EPON SU-8, Sensors & Actuators B, 64(1–3): 156–162 (2000)

    Article  Google Scholar 

  139. H. Löwe and W. Ehrfeld, “State-of-the-art in microreaction technology: concepts, manufacturing and applications,” Electro chimie a Acta, 44(21–22):3679–3689 (1999)

    Google Scholar 

  140. P. M. Martin, D. W. Matson, W. D. Bennettan, D. C. Stewart, and C. C. Bonham, “Laminated ceramic microfluidic components for microreactor applications,” in AIChE 2000 Spring Meeting, Atlanta, GA (2000)

    Google Scholar 

  141. P. L. Mills and R. V. Chaudhari, “Multiphase catalytic reactor engineering and design for pharmaceuticals and fine chemicals,” Catalysis Today, 37(4):367–404 (1997)

    Article  Google Scholar 

  142. R. Srinivasan, I. M. Hsing, P. E. Berger, K. F. Jense, S. L. Firebaugh, M. A. Schmidt, M. P. Harold, J. J. Lerou, and J. F. Ryley, “Micromachined reactors for catalytic partial oxidation reactions,” AIChE Journal, 43(11):3059–3069 (1997)

    Article  Google Scholar 

  143. A. Y. Tonkovich, J. L. Zilka, D. M. Jimenez, M. J. Lamont, and R. S. Wegeng, “MicroChannel chemical reactors for fuel processing,” in AIChE 1998 Spring National Meeting, New Orleans (1998)

    Google Scholar 

  144. N. Burggraf, A. Manz, E. Verpoorte, C. S. Effenhauser, H. M. Widmer, and N. F. de Rooij, “A novel approach to ion separations in solution: synchronized cyclic capillary electrophoresis (SCCE),” Sensors & Actuators B, 20(2–3): 103–110 (1994)

    Article  Google Scholar 

  145. A. G. Hadd, D. E. Raymond, J. W. Halliwell, S. C. Jacobson, and J. M. Ramsey, “Microchip device for performing enzyme assays,” Anal. Chem., 69(17):3407–3412 (1997)

    Article  Google Scholar 

  146. S. Shoji, “Micro total analysis system (μTAS) chemical analysis,” Transactions of the Institute of Electronics, Information & Communication Engineers of Japan, J81C-l(7):385–393 (1998)

    Google Scholar 

  147. H. Becker and W. Dietz, “Microfluidic devices for μ-TAS applications fabricated by polymer hot embossing,” in Proceedings of SPIE—Microfluidic Devices & Systems, Santa Clara, 21–22 September 1998, vol. 3515 (A. B. Frazier and C. H. Ahn, eds.), pp. 177–182

    Google Scholar 

  148. G. Dutton, “Hewlett Packard and Caliper launch microfluidics lab-on-chip—HP 2100 bioanalyzer debuts for biotech and pharmaceutical industries,” Genetic Eng. News, 19(16):1 (1999)

    Google Scholar 

  149. D. J. Harrison, C. Wang, P. Thibeault, F. Ouchen, and S. B. Cheng, “The decade search for the killer ap in μ-TAS, in Proceedings of the Micro Total Analysis Systems Symposium (μTAS 2000), May 14–18, Enschede, The Netherlands (A. van den Berg, W. Olthuis, and P. Bergveld, eds.), Kluwer Academic Publishers (2000), pp. 195–204

    Google Scholar 

  150. J. P. Kutter, “Current developments in electrophoretic and chromatographic separation methods on microfabricated devices,” TrAC—Trends in Anal. Chem., 19(6):352–363 (2000)

    Article  MathSciNet  Google Scholar 

  151. S. Verpoorte, “Nanoscale chemical analysis,“ TrAC—Trends in Analytical Chemistry, 19(6):350–351 (2000)

    Article  Google Scholar 

  152. Aclara Biosciences, Inc., www.aclara.com, August 2002

    Google Scholar 

  153. Caliper Technologies, www.calipertech.com, August 2002

    Google Scholar 

  154. Proceedings of the Micro Total Analysis Systems Symposium (μTAS 2002), November 3–7, Nara, Japan (Y. Baba, S. Shoji, and A. van den Berg, eds.), Kluwer Academic Publishers (2002)

    Google Scholar 

  155. T. T. Veenstra, T. S. J. Lammerink, M. C. Elwenspoek, and A. van den Berg, “Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems,” J. Micromech. Microeng., 9:199–202 (1999)

    Article  Google Scholar 

  156. A. G. Hadd, S. C. Jacobson, and J. M. Ramsey, “Microfluidic assays of acetylcholinesterase inhibitors,” Anal. Chem., 71(22):5206–5212 (1999)

    Article  Google Scholar 

  157. B. Stanislawski, D. Kaniansky, M. Masâr, and M. Jöhnck, “Design principles, performance and perspectives of a complete miniaturized electrophoretic system, in Proceedings of the Micro Total Analysis Systems Symposium (μTAS 2002), November 3–7, Nara, Japan, vol. 1 (Y. Baba, S. Shoji, and A. van den Berg, eds.), Kluwer Academic Publishers (2002), pp. 350–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Ducrée, J., Koltay, P., Zengerle, R. (2006). Microfluidics. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics