Skip to main content

Abstract

Micromachining technologies have enabled a reduction in the size of mechanical sensors and an increase in their functionality to unprecedented levels of miniaturization. In many applications, precision-machined devices already existed when micromachined solutions entered the market. To replace established solutions, mechanical microsensors had to prove their competitiveness with respect to cost, size, and performance. Success stories were due to enhanced functionality, increased accuracy and performance, and higher reliability, at lower device, packaging, and mounting costs. In many applications, such as the automotive area, which was and still remains the strongest driver for MEMS-based sensor sys- tems, sensor cost is one of the most important factors deciding the success and the degree of market penetration of a new system. Starting with the replacement of older sensor generations established in already-existing systems like the airbag, mainly for cost reasons, mechanical microsensors are currently enabling completely new systems that critically rely on them. One well-known example is the Electronic Stability Program (ESP) or Vehicle Dynamics Control (VDC) system, which would not have been affordable and would not have reached today’s performance if it had to rely on classical mechanical sensor approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Von Zanten, R. Erhardt, and G. Pfaff, “FDR—Die Fahrdynamikregelung von Bosch”, ATZ—Automobiltechnische Zeitschrift, 96.614 (1994)

    Google Scholar 

  2. C. J. Van Müllem, F. R. Blom, J. H. J. Fluitman, and M. Elwenspoek, “Piezo-electrically driven silicon beam force sensor”, Sens. Actuators, A25-27:379 (1991)

    Article  Google Scholar 

  3. U. Nothelfer, “Entwicklung und Anwendung neuer Techniken zur Steigerung der Leistungsfaehigkeit piezoresistiver Siliziumdrucksensoren”, Ph.D. Thesis, Technical University of Braunschweig (1995)

    Google Scholar 

  4. S. Fujishima, T. Nakamura, and K. Fujimoto, “Piezoelectric vibratory gyro-scope using flexural vibration of a triangular bar”, Proc. 45th Symposium on Frequency Control (1991), p. 261

    Google Scholar 

  5. T. Ueda, F. Kohsaka, D. Yamazaki, and T. Lino, “Quartz crystal micromechanical devices”, Proc. 3rd Int. Conf. Solid-State Sensors and Actuators, Philadelphia, 1985, p. 113

    Google Scholar 

  6. H. Guckel, M. Nesnidal, J. D. Zook, and D. W. Burns, “Optical drive/sense for high Q resonant microbeams”, Proc. 7th Int. Conf. Solid-State Sensors and Actuators (Transducers’93), Yokohama, Japan (1993), p. 686

    Google Scholar 

  7. R. A. Buser, “Theoretical and experimental investigations on silicon single crystal resonant structures”, Ph.D. thesis, Université de Neuchâtel, 1989; S. Buettgenbach, “Frequenzanaloge Quarzsensoren”, Hard and Soft (Oct. 1988), Fachbeilage Mikroperipherik; C. Burrer, “Design, fabrication and characterization of resonant silicon accelerometers”, Ph.D. thesis, Universität Autònoma de Barcelona, 1995

    Google Scholar 

  8. Y. Kanda, “A graphical representation of the piezoresistance coefficients in silicon”, IEEE Trans. Electron. Devices, ED-29 (1982), p. 64

    Article  Google Scholar 

  9. M. M. Abu-Zeid, “Corner undercutting in anisotropically etched isolation contours”, J. Electrochem. Soc, 131:2138 (1984); H. Seidel, H. Csepregi, A. Heuberger, and H. Baumgartner, “Anisotropic etching of crystalline silicon in alkaline solutions”, J. Electrochem. Soc, 137:3612-3632 (1990)

    Article  Google Scholar 

  10. P. Barth, F. Pourahmadi, R. M ayer, J. Poydock, and K. Petersen, “A monolithic silicon accelerometer with integral air damping and overrange protection”, Tech. Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, USA (1988), p. 35

    Google Scholar 

  11. F. Pourahmadi, L. Christel, and K. Petersen, “Silicon accelerometer with new thermal self-test mechanism”, Tech. Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, USA (1992), p. 122

    Google Scholar 

  12. F. Rudolf, “A micromechanical capacitive accelerometer with a two-point inertial-mass suspension”, Sens. Actuators, 4:191 (1983)

    Article  Google Scholar 

  13. M. Offenberg, B. Eisner, and F. Laermer, “Vapor HF etching for sacrificial oxide removal in surface-micromachining”, Electrochem. Soc. Fall Meeting, Miami Beach, FL, USA (1994), abstract no. 671, p. 1056

    Google Scholar 

  14. . T. Core and R. Howe, Analog Devices, WO 93/21536

    Google Scholar 

  15. G. T. Mulhern, D. S. Soane, and R. T. Howe, Proc. 7th Int. Conf. on Solid-State Sensors andAcutators (Transducers’93), IEEE Electron Devices Society, Yokohama, Japan (1993), p. 296

    Google Scholar 

  16. H. Guckel, J. J. Sniegowski, T. R. Christenson, and F. Raissi, Sens. Actuators, A21:346(1990)

    Article  Google Scholar 

  17. R. W. Ashurst, C. Carraro, R. Maboudian, and W. Frey, “Wafer level antistiction coatings for MEMS”, Sens. Acutators, A104:213 (2003)

    Article  Google Scholar 

  18. M. Offenberg, F. Laermer, B. Eisner, H. Muenzel, and W. Riethmueller, “Novel process for a monolithic integrated accelerometer”, Transducers’95, Stockholm (1995), 148-C4, p. 589

    Google Scholar 

  19. M. Offenberg, H. Muenzel, D. Schubert, O. Schatz, F. Laermer, E. Mueller, B. Maihoefer, and J. Marek, “Acceleration sensor in surface-micromachining for airbag applications with high signal/noise ratio”, Robert Bosch GmbH, SAE 960758 (1996)

    Google Scholar 

  20. LJ. Ristic, D. Koury, E. Joseph, F. Schemansky, M. Kniffin, and L. Cergel, “A two chip accelerometer system for automotive applications”, Micro System Technologies Conference’94, Berlin, Germany (1994), p. 77

    Google Scholar 

  21. J. Soederkvist, “Micromachined gyroscopes”, Sens. Actuators, A43:65 (1994)

    Article  Google Scholar 

  22. K. Funk, “Entwurf, Herstellung und Charakterisierung eines mikromechanischen Sensors zur Messung von Drehgeschwindigkeiten”, Ph.D. thesis, Technical University of Munich, Germany, 1998

    Google Scholar 

  23. J. Soederkvist, “Piezoelectric beams and vibrating angular rate sensors”, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 38(3):271 (1991)

    Article  Google Scholar 

  24. H. Shimizu, T. Yoshida, and C. Mashiko, “Gyroscope using circular rod type piezoelectric vibrator”, European patent appl. no. 488 370 (1991)

    Google Scholar 

  25. M. W. Putty and K. Najafi, “A micromachined vibrating ring gyroscope”, Solid-State Sensors and Actuators Workshop, Hilton Head, USA (1994), p. 213; Putty, M.W., Ph.D. thesis, University of Michigan, USA, 1995

    Google Scholar 

  26. M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihoefer, S. Mahler, H. Muenzel, and U. Bischof, “A precision yaw rate sensor in silicon surface micromaching”, Proc. Transducers’97, Chicago, USA (1997)

    Google Scholar 

  27. K. Funk, A. Schilp, M. Offenberg, B. Eisner, and F. Laermer, “Surface-micromachining of resonant silicon structures”, Transducers’95, Stockholm, (1995), Late News, p. 50; R. Schellin, A. Thomae, M. Lang, W. Bauer, J. Mohaupt, G. Bischopink, L. Tanten, H. Baumann, H. Emmerich, S. Pinter, J. Marek, K. Funk, G. Lorenz, and R. Neul, “A low cost angular rate sensor for automotive applications in surface micromachining technology”, Advanced Microsystems for Automotive Applications 99, Berlin, Germany (1999), p. 239

    Google Scholar 

  28. R. Willig and M. Moerbe, “New generation of inertial sensor cluster for ESP and future vehicle stabilizing systems in automotive applications”, SAE paper 2003-01-0199

    Google Scholar 

  29. E. Obermeier, “Polysilicon layers lead to a new generation of pressure sensors,” Transducers’95, Philadelphia (1985), p. 430

    Google Scholar 

  30. S. Armbruster, F. Schaefer, G. Lammel, H. Artman, C. Schelling, H. Benzel, S. Finkbeiner, F. Laermer, P. Ruther, and O. Paul, “A novel micromachining process for the fabrication of monocrystalline Si-membranes using porous silicon, Transducers’ 03, Boston, MA (2003), p. 246

    Google Scholar 

  31. S. Otake, M. Onoda, and K. Nagase, “Fuel pressure sensor”, Spec. Publ. SAE 1998, SP-1312 (1998), p. 61

    Google Scholar 

  32. Y. Suzuki, H. Tanaka, M. Imai, M. Harrision, and N. Oba, “Common rail pressure sensor”, Spec. Publ. SAE 2002, SP-1076 (2002)

    Google Scholar 

  33. Data sheet on “Piezoresistive absolute pressure sensors 4043A…”, Kistler Instrumente AG, CH-8408, Winterthur, Switzerland

    Google Scholar 

  34. C. Sander, J. Knutti, and J. Meindl, “A monolithic capacitive pressure sensor with pulse-period output”, IEEE Trans. Electron Devices, 27(5):927 (1980)

    Article  Google Scholar 

  35. Y. Manoli, W. Mokwa, and E. Spiegel, “Surface micromachined pressure sensors with integrated CMOS read-out electronics”, Sens. Actuators, Phys. (Switzerland), A43(l–3):157 (1994); T. Scheiter, K.-G. Oppermann, M. Steger, C. Hierold, W.M. Werner, and H.-J. Timme, “Full integration of a pressure sensor system into a standard BiCMOS-process”, Proc. Eurosensors XI, Warsaw, Poland (1997), p. 1595

    Google Scholar 

  36. H.-J. Kress, J. Marek, M. Mast, O. Schatz, and J. Muchow, “Integrated silicon pressure sensor for automotive application with electronic trimming”, SAE Tech. Paper Series 950533 (1995)

    Google Scholar 

  37. J. Smits, H. Tilmans, and T. Lammerink, “Pressure dependence of resonant diaphragm pressure sensor”, Transducers’85, Philadelphia, USA (1985), p. 93

    Google Scholar 

  38. T. Lammerink and W. Wlodarski, “Integrated thermally excited resonant diaphragm pressure sensor”, Tranducers’85, Philadelphia, USA (1985), p. 97

    Google Scholar 

  39. H. Wohltjen, “Surface acoustic wave microsensors”, Proc. 4th Int. Conf. Solid-State Sensors and Actuators, Tokyo, Japan (1987), p. 471

    Google Scholar 

  40. F. R. Blom, S. Bouwstra, J. H. J. Fluitman, and M. Elwenspoek, “Resonating silicon beam force sensor”, Sens. Actuators, 17:513 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 William Andrew, Inc.

About this chapter

Cite this chapter

Laermer, F. (2006). Mechanical Microsensors. In: Korvink, J.G., Paul, O. (eds) MEMS: A Practical Guide to Design, Analysis, and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33655-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33655-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21117-4

  • Online ISBN: 978-3-540-33655-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics