Skip to main content

Abstract

Heat sources can be homogenous or concentrated. The latter can be also divided into point sources, linear sources and surface sources. Sources can be instantaneous or perpetually active in time. The basic solutions that account for the presence of point, linear and surface heat sources in an infinite space are presented in references [2, 4, 5, 8, 14, 23, 25]. The analysis of transient temperature fields during the welding process is the object of a discussion in references [7, 10, 17, 20, 21, 24], while the analysis of temperature fields, which are formed during material processing tasks, such as grinding or machine cutting, is discussed in references [3, 6, 9, 13, 18, 26, 29]. When analyzing temperature fields created by instantenous (impulselike) heat sources, one can make use of the Dirac function [11, 31], which satisfies the following conditions:

$$ \delta (t) = 0 dla t \ne 0, $$
(1)
$$ \int\limits_{ - \infty }^\infty {\delta (t)dt = 1} . $$
(2)

Dirac function, therefore, equals zero for all values of t with an exception of t=0, when t is infinite. Definition of this function differs from the classical definition of a function. It can be interpreted graphically (Fig. 25.1).

Aproximation of the Dirac funcition δ (t) by means of a rectangular pulse with a width of 2ε

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. ANSYS 5.5.3 (1998). ANSYS Inc., Urbana

    Google Scholar 

  2. Baehr HD, Stephan K (1994) Wärme-und Stoffübertragung. Springer Berlin

    Google Scholar 

  3. Barber JR (1967) Distribution of heat between sliding surfaces. J. Mech. Eng. Sci. 9: 351–354

    Article  Google Scholar 

  4. Becker M (1986).: Heat Transfer. A Modern Approach. Plenum Press, New York-London

    Google Scholar 

  5. Becker M (2000) Nonlinear transient heat conduction using similarity groups. Transactions of the ASME, J. of Heat Transfer 122: 33–39

    Article  Google Scholar 

  6. Bos J, Moes H (1995) Frictional heating of tribological contacts. Transactions of the ASME, J. Tribology 117: 171–217

    Article  Google Scholar 

  7. Carslaw HS, Jaeger JC (1959) Condution of Heat in Solids. Ed. 2 Oxford University Pres, London

    Google Scholar 

  8. Dowden JM (2001) The Mathematics of Thermal Modeling. An Introduction to the Theory of Laser Material Processing. Chapman & Hall/CRC, Boca Raton-London

    Book  MATH  Google Scholar 

  9. Francis HA (1970) Interfacial temperature distribution within a sliding hertzian contact. ASLE Trans. 14: 41–54

    Google Scholar 

  10. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall. Trans. 15B(6): 299–305

    Google Scholar 

  11. Goode SW (2000) Differential Equations and Linear Algebra: Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  12. Havalda A (1963) Thermal processes in electrical welding (in Polish). WNT, Warsaw

    Google Scholar 

  13. Hou ZB, Komanduri R (2000) General solutions for stationary/moving plane heat source problems in manufacturing and tribology. Int. J. of Heat and Mass Transfer 43: 1679–1698

    Article  MATH  Google Scholar 

  14. Industrial Thermics. User’s Guide (1996). Visual Analysis GmbH, München

    Google Scholar 

  15. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. Proc. Roy. Soc. NSW pp. 203–224

    Google Scholar 

  16. Janke E, Emde F, Lösch F (1960) Tafeln höherer Funktionen. Issue 6. Teubner Verlag, Stuttgart

    Google Scholar 

  17. Kasuya D, Yurioka N (1993) Prediction of welding thermal history by a comprehensive solution. Weld. Journal 72(3): 107–115

    Google Scholar 

  18. Ling FF (1973) Surface Mechanics. Wiley-Interscience, New York

    Google Scholar 

  19. MathCad 2000 (2000), MathSoft, Cambridge

    Google Scholar 

  20. Moore JE, Bibby MJ, Goldak JA, Santyr S (1986) A comparison of the point source and finite element schemes for computing weld cooling. In Nippes EF, Ball DJ (eds) Welding Research: The State of the Art. ASM, Miami, pp. 1–9

    Google Scholar 

  21. Myers PT, Uyehara OA, Borman GL (1967) Fundamentals of heat flow in welding. Welding Research Council Bulletin 123: 1–46

    Google Scholar 

  22. Myśliwiec M (1972) Thermo-mechanical fundamentals of welding (in Polish). WNT, Warsaw

    Google Scholar 

  23. Pilarczyk J (1983) Thermal phenomena in the process of welding (in Polish). In: Engineer’s Guide. Welding Technology Vol. I. WNT, Warsaw, pp. 32–55

    Google Scholar 

  24. Radaj D (1992) Heat Effects of Welding. Springer, New York

    Google Scholar 

  25. Schneider PJ (1973) Conduction. Section 3. In: Rohsenow WM, Hartnett JP (eds) Handbook of Heat Transfer. McGraw-Hill, New York

    Google Scholar 

  26. Shaw MC (1984) Metal Cutting Principles. Oxford University Press, Oxford

    Google Scholar 

  27. Slużalec A (1969) Metallurgic and thermal welding processes. Part II. Thermal welding processes (in Polish). Częstochowa University of Technology, Częstochowa

    Google Scholar 

  28. Thompson WJ (1997) Atlas for Computing Mathematical Functions. Wiley-Interscience Publication, New York

    Google Scholar 

  29. Tian X, Kennedy FE (1994) Maximum and average flash temperatures in sliding contact. Transactions ASME, J. Tribology 116: 167–174

    Article  Google Scholar 

  30. Węgrzyn J (1971) Thermal and metallurgical welding processes (in Polish). Silesian University of Technology, Gliwice

    Google Scholar 

  31. Zill DG (1986) Differential Equations with Boundary-Value Problems. Prindle Weber & Schmidt, Boston

    Google Scholar 

  32. Baghranskij KW, Dobrotina ZA (1968) Theory od welding processes. Kharkov Univ. Press, Kharkov

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Heat Sources. In: Solving Direct and Inverse Heat Conduction Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33471-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33471-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33470-5

  • Online ISBN: 978-3-540-33471-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics