Skip to main content

Approximate Analytical Methods for Solving Transient Heat Conduction Problems

  • Chapter
Solving Direct and Inverse Heat Conduction Problems

Abstract

One of the most popular approximate analytical methods are Thermal balance method [3, 4, 6, 7, 1219, 22÷25] and the Biot method [1, 2, 911, 20]. Also the Gauss’ principle of least constraint, known from the analytical mechanics, can also be applied when approximately solving the differential heat conduction equation [20]. In this chapter, the first of the aforementioned methods will be discussed in greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Barry GW, Goodling JS (1987) A Stefan problem with contact resistance. Transactions of the ASME, J. of Heat Transfer 109: 820–825

    Article  Google Scholar 

  2. Biot MA (1970) Variational Principles in Heat Transfer. Clarendon Press, Oxford

    MATH  Google Scholar 

  3. Chung BTF, Hsiao JS (1985) Heat transfer with ablation in a finite slab subjected to time-variant heat fluxes. AIAA Journal 23: 145–150

    Article  Google Scholar 

  4. Goodman TR (1964) Application of Integral Methods to Transient Non-linear Heat Transfer. Advances in Heat Transfer 1: 51–122

    Google Scholar 

  5. Karman T (1921) Über laminare und turbulente Reibung. Zeitschrift für angewandte Mathematik und Mechanik 1: 233–252

    Google Scholar 

  6. Młynarski F, Taler J (1976) The effect of thermal-shock-caused stresses on the durability of radiant tubes of converter waste-heat boilers. Power Engineering Archives 3: 115–127

    Google Scholar 

  7. Młynarski F, Taler J (1982) Temperature and stress field triggered by a thermal shock. Chemical and Process Engineering 3(1): 149–162

    Google Scholar 

  8. Pohlhausen K (1921) Zur näherungsweisen der Differentialg-leichung der laminaren Reibungsschicht. Zeitschrift für angewandte Mathematik und Mechanik 1: 252–268

    Google Scholar 

  9. Prasad A, Agrawal HC (1972) Biot’s variational principle for a Stefan problem. AIAA Journal 10(3): 325–327

    Article  Google Scholar 

  10. Prasad A, Sinha SN (1975) Radiative ablation of melting solids. AIAA Journal 14(10): 1494–1497

    Article  MathSciNet  Google Scholar 

  11. Rao VD, Sarma PK, Raju GJVJ (1985) Biot’s variational method to fluidized-bed coating on thin plates. Transactions of the ASME, J. of Heat Transfer 107: p. 258–260

    Article  Google Scholar 

  12. Razelos P (1973) Methods of Obtaining Approximate Solution. Section 4 In: Handbook of Heat Transfer, Ed. by WM Rohsenow, JP Hartnett, McGraw-Hill, New York

    Google Scholar 

  13. Rup K, Taler J (1977) Defining transient temperature field in a flat wall with a variable heat conduction coefficient. Theoretical and Applied Mechancis 15(1): 21–28

    Google Scholar 

  14. Rup K, Taler J (1979) Approximate analysis of transient temperature field in simple fins. Engineers’ Thesis 1: 145–153

    Google Scholar 

  15. Taler J, Rup K (1976) Applying heat balance method when determining transient temperature and stress field in a flat wall. Chemical Engineering 6(3): 657–672

    Google Scholar 

  16. Taler J (1978) Approximation of transient temperature field in cylindrical and spherical bodies. Theoretical and Applied Mechanics 16(2): 247–263

    Google Scholar 

  17. Taler J (1979) Approximation of transient temperature fields by one-dimensional polynomials. Chemical Engineering 9(1): 243–258

    Google Scholar 

  18. Taler J, Rup K (1997) Calculating fins by means of ‘averaging functional corrections’ method. Machinery Construction Archives 26(1): 143–153

    Google Scholar 

  19. Taler J (1980) ‘Averaging functional corrections’ method and its relation to heat balance method. Chemical and Process Engineering 3(1): 609–626

    Google Scholar 

  20. Taler J (1977) Application of Gauss method to an approximate solving of heat conduction differential equations. Engineers’ Thesis 25 (2): 349–368

    MATH  MathSciNet  Google Scholar 

  21. Taler J (1980) Weighted residuums method and its application to the calculation of temperature fields in boilers’ elements. Monography (14) Pub. Krakow University of Technology, Kraków

    Google Scholar 

  22. Venkateshan SP, Solaiappan O (1988) Approximate solution of non-linear transient heat conduction in one dimension. Wärme-und Stoffübertragung 23:229–233

    Article  Google Scholar 

  23. Venkateshan SP, Rao VR (1991) Approximate solution of non-linear transient heat conduction in cylindrical geometry. Wärme-und Stoffübertragung 26: 97–102

    Article  Google Scholar 

  24. Yang JW, Bankoff SG (1987) Solidification effects on the fragmentation of molten metal drops behind a pressure shock wave. Transactions of the ASME, J. of Heat Transfer 109: 226–231

    Article  Google Scholar 

  25. Yang KT, Szewczyk A (1959) An approximate treatment of unsteady heat conduction in semi-infinite solids with variable thermal properties. Transactions of the ASME, J. of Heat Transfer 81: 251–252

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Approximate Analytical Methods for Solving Transient Heat Conduction Problems. In: Solving Direct and Inverse Heat Conduction Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33471-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33471-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33470-5

  • Online ISBN: 978-3-540-33471-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics