Skip to main content

A Viral Conspiracy: Hijacking the Chemokine System Through Virally Encoded Pirated Chemokine Receptors

  • Chapter
Chemokines and Viral Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 303))

Abstract

Several herpesviruses and poxviruses contain genes encoding for G proteincoupled receptor (GPCR) proteins that are expressed on the surface of infected host cells and/or the viral envelope. Most of these membrane-associated proteins display highest homology to the subfamily of chemokine receptors known to play a key role in the immune system. Virally encoded chemokine receptors have been modified through evolutionary selection both in chemokine binding profile and signaling capacity, ultimately resulting in immune evasion and cellular reprogramming in favor of viral survival and replication. Insight in the role of virally encoded GPCRs during the viral lifecycle may reveal their potential as future drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcami A (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50

    PubMed  CAS  Google Scholar 

  • Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350

    PubMed  CAS  Google Scholar 

  • Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, Asch AS, Cesarman E, Gershengorn MC, Mesri EA, Gerhengorn MC (1998) G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89

    PubMed  CAS  Google Scholar 

  • Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S, Silverstein RL, Rafii S, Mesri EA (2003) Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell 3:131–143

    PubMed  CAS  Google Scholar 

  • Bakker RA, Casarosa P, Timmerman H, Smit MJ, Leurs R (2004) Constitutively active Gq/11-coupled receptors enable signaling by co-expressed Gi/o-coupled receptors. J Biol Chem 279:5152–5161

    PubMed  CAS  Google Scholar 

  • Beisser PS, Vink C, Van Dam JG, Grauls G, Vanherle SJ, Bruggeman CA (1998) The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363

    PubMed  CAS  Google Scholar 

  • Beisser PS, Grauls G, Bruggeman CA, Vink C (1999) Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73:7218–7230

    PubMed  CAS  Google Scholar 

  • Beisser PS, Verzijl D, Gruijthuijsen YK, Beuken E, Smit MJ, Leurs R, Bruggeman CA, Vink C (2005) The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol 79:441–449

    PubMed  CAS  Google Scholar 

  • Billstrom MA, Lehman LA, Scott Worthen G (1999) Depletion of extracellular RANTES during human cytomegalovirus infection of endothelial cells. Am J Respir Cell Mol Biol 21:163–167

    PubMed  CAS  Google Scholar 

  • Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L, Arenzana-Seisdedos F, Virelizier JL, Michelson S (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866

    PubMed  CAS  Google Scholar 

  • Bosio A, Knorr C, Janssen U, Gebel S, Haussmann HJ, Muller T (2002) Kinetics of gene expression profiling in Swiss 3T3 cells exposed to aqueous extracts of cigarette smoke. Carcinogenesis 23:741–748

    PubMed  CAS  Google Scholar 

  • Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14:297–309

    PubMed  CAS  Google Scholar 

  • Burnett MS, Gaydos CA, Madico GE, Glad SM, Paigen B, Quinn TC, Epstein SE (2001) Atherosclerosis in apoE knock out mice infected with multiple pathogens. J Infect Dis 183:226–231

    PubMed  CAS  Google Scholar 

  • Camarda G, Spinetti G, Bernardini G, Mair C, Davis-Poynter N, Capogrossi MC, Napolitano M (1999) The equine herpesvirus 2 E1 open reading frame encodes a functional chemokine receptor. J Virol 73:9843–9848

    PubMed  CAS  Google Scholar 

  • Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137

    PubMed  CAS  Google Scholar 

  • Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, Verzijl D, Bruggeman CA, Mertens T, Leurs R, Vink C, Smit MJ (2003a) Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem 278:50010–50023

    PubMed  CAS  Google Scholar 

  • Casarosa P, Menge WM, Minisini R, Otto C, vanHeteren J, Jongejan A, Timmerman H, Moepps B, Kirchhoff F, Mertens T, Smit MJ, Leurs R (2003b) Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J Biol Chem 278:5172–5178

    PubMed  CAS  Google Scholar 

  • Caserta MT, McDermott MP, Dewhurst S, Schnabel K, Carnahan JA, Gilbert L, Lathan G, Lofthus GK, Hall CB (2004) Human herpesvirus 6 (HHV6) DNA persistence and reactivation in healthy children. J Pediatr 145:478–484

    PubMed  CAS  Google Scholar 

  • Cathomas G (2003) Kaposi’s sarcoma-associated herpesvirus (KSHV) /human herpesvirus 8 (HHV-8) as a tumour virus. Herpes 10:72–77

    PubMed  Google Scholar 

  • Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y (1995) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714

    PubMed  CAS  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    PubMed  CAS  Google Scholar 

  • Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG (1990) Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344:774–777

    PubMed  CAS  Google Scholar 

  • Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17

    PubMed  CAS  Google Scholar 

  • Couty JP, Geras-Raaka E, Weksler BB, Gershengorn MC (2001) Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor signals through multiple path-ways in endothelial cells. J Biol Chem 276:33805–33811

    PubMed  CAS  Google Scholar 

  • Davis-Poynter NJ, Lynch DM, Vally H, Shellam GR, Rawlinson WD, Barrell BG, Farrell HE (1997) Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71:1521–1529

    PubMed  CAS  Google Scholar 

  • Davison AJ (2002) Evolution of the herpesviruses. Vet Microbiol 86:69–88

    PubMed  CAS  Google Scholar 

  • Davison AJ, Dargan DJ, Stow ND (2002) Fundamental and accessory systems in herpesviruses. Antiviral Res 56:1–11

    PubMed  CAS  Google Scholar 

  • De Bolle L, Naesens L, De Clercq E (2005) Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 18:217–245

    PubMed  Google Scholar 

  • Dedicoat M, Newton R (2003) Review of the distribution of Kaposi’s sarcoma-associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s sarcoma. Br J Cancer 88:1–3

    PubMed  CAS  Google Scholar 

  • DeMeritt IB, Milford LE, Yurochko AD (2004) Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J Virol 78:4498–4507

    PubMed  CAS  Google Scholar 

  • Dewhurst S, McIntyre K, Schnabel K, Hall CB (1993) Human herpesvirus 6 (HHV-6) variant B accounts for the majority of symptomatic primary HHV-6 infections in a population of U. S. infants. J Clin Microbiol 31:416–418

    CAS  Google Scholar 

  • Diven DG (2001) An overview of poxviruses. J Am Acad Dermatol 44:1–16

    PubMed  CAS  Google Scholar 

  • Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE (1999) Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 73:8040–8052

    PubMed  CAS  Google Scholar 

  • Droese J, Mokros T, Hermosilla R, Schulein R, Lipp M, Hopken UE, Rehm A (2004) HCMV-encoded chemokine receptor US28 employs multiple routes for internalization. Biochem Biophys Res Commun 322:42–49

    PubMed  CAS  Google Scholar 

  • Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, van Marck E, Salmon D, Gorin I, Escande JP, Weiss RA, Alitalo K, Boshoff C (1999) Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A 96:4546–4551

    PubMed  CAS  Google Scholar 

  • Ehlers B, Ochs A, Leendertz F, Goltz M, Boesch C, Matz-Rensing K (2003) Novel simian homologues of Epstein-Barr virus. J Virol 77:10695–10699

    PubMed  CAS  Google Scholar 

  • Fraile-Ramos A, Kledal TN, Pelchen-Matthews A, Bowers K, Schwartz TW, Marsh M (2001) The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12:1737–1749

    PubMed  CAS  Google Scholar 

  • Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M (2002) Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3:218–232

    PubMed  CAS  Google Scholar 

  • Fraile-Ramos A, Kohout TA, Waldhoer M, Marsh M (2003) Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic 4:243–253

    PubMed  CAS  Google Scholar 

  • Freitas RB, Freitas MR, Linhares AC (2003) Evidence of active herpesvirus 6 (variant-A) infection in patients with lymphadenopathy in Belem, Para, Brazil. Rev Inst Med Trop Sao Paulo 45:283–288

    PubMed  Google Scholar 

  • Frenkel N, Wyatt LS (1992) HHV-6 and HHV-7 as exogenous agents in human lymphocytes. Dev Biol Stand 76:259–265

    PubMed  CAS  Google Scholar 

  • Gallo RC (1998) The enigmas of Kaposi’s sarcoma. Science 282:1837–1839

    PubMed  CAS  Google Scholar 

  • Gao JL, Murphy PM (1994) Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem 269:28539–28542

    PubMed  CAS  Google Scholar 

  • Gao Z, Metz WA (2003) Unraveling the chemistry of chemokine receptor ligands. Chem Rev 103:3733–3752

    PubMed  CAS  Google Scholar 

  • Gombert M, Dieu-Nosjean MC, Winterberg F, Bunemann E, Kubitza RC, Da Cunha L, Haahtela A, Lehtimaki S, Muller A, Rieker J, Meller S, Pivarcsi A, Koreck A, Fridman WH, Zentgraf HW, Pavenstadt H, Amara A, Caux C, Kemeny L, Alenius H, Lauerma A, Ruzicka T, Zlotnik A, Homey B (2005) CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 174:5082–5091

    PubMed  CAS  Google Scholar 

  • Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, Efstathiou S, Craxton M, Macaulay HA (1995) The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51

    PubMed  CAS  Google Scholar 

  • Gruijthuijsen YK, Casarosa P, Kaptein SJ, Broers JL, Leurs R, Bruggeman CA, Smit MJ, Vink C (2002) The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J Virol 76:1328–1338

    PubMed  CAS  Google Scholar 

  • Gubser C, Hue S, Kellam P, Smith GL (2004) Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117

    PubMed  CAS  Google Scholar 

  • Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M (2003) Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 77:2631–2639

    PubMed  CAS  Google Scholar 

  • Haque NS, Fallon JT, Taubman MB, Harpel PC (2001) The chemokine receptor CCR8 mediates human endothelial cell chemotaxis induced by I-309 and Kaposi sarcoma herpesvirus-encoded vMIP-I and by lipoprotein(a)-stimulated endothelial cell conditioned medium. Blood 97:39–45

    PubMed  CAS  Google Scholar 

  • Haque NS, Fallon JT, Pan JJ, Taubman MB, Harpel PC (2004) Chemokine receptor-8 (CCR8) mediates human vascular smooth muscle cell chemotaxis and metalloproteinase-2 secretion. Blood 103:1296–1304

    PubMed  CAS  Google Scholar 

  • Harnett GB, Farr TJ, Pietroboni GR, Bucens MR (1990) Frequent shedding of human herpesvirus 6 in saliva. J Med Virol 30:128–130

    PubMed  CAS  Google Scholar 

  • Hayward GS (1999) KSHV strains: the origins and global spread of the virus. Semin Cancer Biol 9:187–199

    PubMed  CAS  Google Scholar 

  • Hesselgesser J, Ng HP, Liang M, Zheng W, May K, Bauman JG, Monahan S, Islam I, Wei GP, Ghannam A, Taub DD, Rosser M, Snider RM, Morrissey MM, Perez HD, Horuk R (1998) Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J Biol Chem 273:15687–15692

    PubMed  CAS  Google Scholar 

  • Heydorn A, Sondergaard BP, Ersboll B, Holst B, Nielsen FC, Haft CR, Whistler J, Schwartz TW (2004) A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein. 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem 279:54291–54303

    PubMed  CAS  Google Scholar 

  • Holst PJ, Rosenkilde MM, Manfra D, Chen SC, Wiekowski MT, Holst B, Cifire F, Lipp M, Schwartz TW, Lira SA (2001) Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J Clin Invest 108:1789–1796

    PubMed  CAS  Google Scholar 

  • Horsley V, Pavlath GK (2002) NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 156:771–774

    PubMed  CAS  Google Scholar 

  • Hunninghake GW, Monick MM, Liu B, Stinski MF (1989) The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J Virol 63:3026–3033

    PubMed  CAS  Google Scholar 

  • Isegawa Y, Ping Z, Nakano K, Sugimoto N, Yamanishi K (1998) Human herpesvirus 6 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol 72:6104–6112

    PubMed  CAS  Google Scholar 

  • Jenner RG, Alba MM, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75:891–902

    PubMed  CAS  Google Scholar 

  • Jensen KK, Manfra DJ, Grisotto MG, Martin AP, Vassileva G, Kelley K, Schwartz TW, Lira SA (2005) The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi’s sarcoma. J Immunol 174:3686–3694

    PubMed  CAS  Google Scholar 

  • Kaptein SJ, Beisser PS, Gruijthuijsen YK, Savelkouls KG, van Cleef KW, Beuken E, Grauls GE, Bruggeman CA, Vink C (2003) The rat cytomegalovirus R78 G protein-coupled receptor gene is required for production of infectious virus in the spleen. J Gen Virol 84:2517–2530

    PubMed  CAS  Google Scholar 

  • Katsafanas GC, Schirmer EC, Wyatt LS, Frenkel N (1996) In vitro activation of human herpesviruses 6 and 7 from latency. Proc Natl Acad Sci U S A 93:9788–9792

    PubMed  CAS  Google Scholar 

  • Keller MJ, Wheeler DG, Cooper E, Meier JL (2003) Role of the human cytomegalovirus major immediate-early promoter’s 19-base-pair-repeat cyclic AMP-response element in acutely infected cells. J Virol 77:6666–6675

    PubMed  CAS  Google Scholar 

  • Kirshner JR, Staskus K, Haase A, Lagunoff M, Ganem D (1999) Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi’s sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J Virol 73:6006–6014

    PubMed  CAS  Google Scholar 

  • Kledal TN, Rosenkilde MM, Schwartz TW (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441:209–214

    PubMed  CAS  Google Scholar 

  • Kovacs A, Schluchter M, Easley K, Demmler G, Shearer W, La Russa P, Pitt J, Cooper E, Goldfarb J, Hodes D, Kattan M, McIntosh K (1999) Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection Study Group. N Engl J Med 341:77–84

    PubMed  CAS  Google Scholar 

  • Kuhn DE, Beall CJ, Kolattukudy PE (1995) The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem Biophys Res Commun 211:325–330

    PubMed  CAS  Google Scholar 

  • Landolfo S, Gariglio M, Gribaudo G, Lembo D (2003) The human cytomegalovirus. Pharmacol Ther 98:269–297

    PubMed  CAS  Google Scholar 

  • Lee BJ, Koszinowski UH, Sarawar SR, Adler H (2003) A gammaherpesvirus G proteincoupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. J Immunol 170:243–251

    PubMed  CAS  Google Scholar 

  • Lee HJ, Essani K, Smith GL (2001) The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 281:170–192

    PubMed  CAS  Google Scholar 

  • Lee Y, Sohn WJ, Kim DS, Kwon HJ (2004) NF-kappaB-and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW264.7. Eur J Biochem 271:1094–1105

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    PubMed  CAS  Google Scholar 

  • Louahed J, Struyf S, Demoulin JB, Parmentier M, Van Snick J, Van Damme J, Renauld JC (2003) CCR8-dependent activation of the RAS/MAPK pathway mediates antiapoptotic activity of I-309/CCL1 and vMIP-I. Eur J Immunol 33:494–501

    PubMed  CAS  Google Scholar 

  • Margulies BJ, Browne H, Gibson W (1996) Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225:111–125

    PubMed  CAS  Google Scholar 

  • McFadden G (2005) Poxvirus tropism. Nat Rev Microbiol 3:201–213

    PubMed  CAS  Google Scholar 

  • McGeoch DJ, Dolan A, Ralph AC (2000) Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406

    PubMed  CAS  Google Scholar 

  • McLean KA, Holst PJ, Martini L, Schwartz TW, Rosenkilde MM (2004) Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325:241–251

    PubMed  CAS  Google Scholar 

  • Menotti L, Mirandola P, Locati M, Campadelli-Fiume G (1999) Trafficking to the plasma membrane of the seven-transmembrane protein encoded by human herpesvirus 6 U51 gene involves a cell-specific function present in T lymphocytes. J Virol 73:325–333

    PubMed  CAS  Google Scholar 

  • Middeldorp JM, Brink AA, van den Brule AJ, Meijer CJ (2003) Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol 45:1–36

    PubMed  Google Scholar 

  • Milne RS, Mattick C, Nicholson L, Devaraj P, Alcami A, Gompels UA (2000) RANTES binding and down-regulation by a novel human herpesvirus-6 beta chemokine receptor. J Immunol 164:2396–2404

    PubMed  CAS  Google Scholar 

  • Minisini R, Tulone C, Luske A, Michel D, Mertens T, Gierschik P, Moepps B (2003) Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 77:4489–4501

    PubMed  CAS  Google Scholar 

  • Mizoue LS, Bazan JF, Johnson EC, Handel TM (1999) Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry 38:1402–1414

    PubMed  CAS  Google Scholar 

  • Mocarski ES (1996) Cytomegalovirus and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2447–2492

    Google Scholar 

  • Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS (2001) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–2648

    PubMed  CAS  Google Scholar 

  • Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind JS (2003) Endothelial infection with KSHV genes in vivo reveals that v GPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36

    PubMed  CAS  Google Scholar 

  • Moorman NJ, Virgin HWt, Speck SH (2003) Disruption of the gene encoding the gammaHV68 v-GPCR leads to decreased efficiency of reactivation from latency. Virology 307:179–190

    PubMed  CAS  Google Scholar 

  • Munshi N, Ganju RK, Avraham S, Mesri EA, Groopman JE (1999) Kaposi’s sarcoma associated herpesvirus-encoded G protein-coupled receptor activation of c-jun amino-terminal kinase/stress-activated protein kinase and lyn kinase is mediated by related adhesion focal tyrosine kinase/proline-rich tyrosine kinase 2. J Biol Chem 274:31863–31867

    PubMed  CAS  Google Scholar 

  • Murphy PM (2001) Viral exploitation and subversion of the immune system through chemokine mimicry. Nat Immunol 2:116–122

    PubMed  CAS  Google Scholar 

  • Murphy PM (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227–229

    PubMed  CAS  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    PubMed  CAS  Google Scholar 

  • Najarro P, Lee HJ, Fox J, Pease J, Smith GL (2003) Yaba-like disease virus protein 7L is a cell-surface receptor for chemokine CCL1. J Gen Virol 84:3325–3336

    PubMed  CAS  Google Scholar 

  • Nakano K, Tadagaki K, Isegawa Y, Aye MM, Zou P, Yamanishi K (2003) Human herpesvirus 7 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol 77:8108–8115

    PubMed  CAS  Google Scholar 

  • Neipel F, Ellinger K, Fleckenstein B (1991) The unique region of the human herpesvirus 6 genome is essentially collinear with the UL segment of human cytomegalovirus. J Gen Virol 72:2293–2297

    PubMed  CAS  Google Scholar 

  • Nicholas J (1996) Determination and analysis of the complete nucleotide sequence of human herpesvirus. J Virol 70:5975–5989

    PubMed  CAS  Google Scholar 

  • Offermanns S (2003) G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol 83:101–130

    PubMed  CAS  Google Scholar 

  • Oliveira SA, Shenk TE (2001) Murine cytomegalovirus M78 protein, a G proteincoupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci U S A 98:3237–3242

    PubMed  CAS  Google Scholar 

  • Onuffer JJ, Horuk R (2002) Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol Sci 23:459–467

    PubMed  CAS  Google Scholar 

  • Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN (2005) Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 79:536–546

    PubMed  CAS  Google Scholar 

  • Penfold ME, Schmidt TL, Dairaghi DJ, Barry PA, Schall TJ (2003) Characterization of the rhesus cytomegalovirus US28 locus. J Virol 77:10404–10413

    PubMed  CAS  Google Scholar 

  • Proudfoot AE (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2:106–115

    PubMed  CAS  Google Scholar 

  • Randolph-Habecker JR, Rahill B, Torok-Storb B, Vieira J, Kolattukudy PE, Rovin BH, Sedmak DD (2002) The expression of the cytomegalovirus chemokine receptor homolog US28 sequesters biologically active CC chemokines and alters IL-8 production. Cytokine 19:37–46

    PubMed  CAS  Google Scholar 

  • Reitz MS Jr, Nerurkar LS, Gallo RC (1999) Perspective on Kaposi’s sarcoma: facts, concepts, and conjectures. J Natl Cancer Inst 91:1453–1458

    PubMed  Google Scholar 

  • Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–346

    PubMed  CAS  Google Scholar 

  • Rivailler P, Carville A, Kaur A, Rao P, Quink C, Kutok JL, Westmoreland S, Klumpp S, Simon M, Aster JC, Wang F (2004) Experimental rhesus lymphocryptovirus infection in immunosuppressedmacaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood 104:1482–1489

    PubMed  CAS  Google Scholar 

  • Rosenkilde MM, Schwartz TW (2000) Potency of ligands correlates with affinity measured against agonist and inverse agonists but not against neutral ligand in constitutively active chemokine receptor. Mol Pharmacol 57:602–609

    PubMed  CAS  Google Scholar 

  • Rosenkilde MM, Schwartz TW (2004) The chemokine system—a major regulator of angiogenesis in health and disease. Apmis 112:481–495

    PubMed  CAS  Google Scholar 

  • Rosenkilde MM, Kledal TN, Brauner-Osborne H, Schwartz TW (1999) Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J Biol Chem 274:956–961

    PubMed  CAS  Google Scholar 

  • Rosenkilde MM, McLean KA, Holst PJ, Schwartz TW (2004) The CXC chemokine receptor encoded by herpesvirus saimiri, ECRF3, shows ligand-regulated signaling through Gi, Gq, and G12/13 proteins but constitutive signaling only through Gi and G12/13 proteins. J Biol Chem 279:32524–32533

    PubMed  CAS  Google Scholar 

  • Rosenkilde MM, Kledal TN, Schwartz TW (2005) High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3. Mol Pharmacol 68:11–19

    PubMed  CAS  Google Scholar 

  • Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, Halligan G, Biberfeld P, Wong-Staal F, Kramarsky B, et al (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–601

    PubMed  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366:381–416

    PubMed  CAS  Google Scholar 

  • Shepard LW, Yang M, Xie P, Browning DD, Voyno-Yasenetskaya T, Kozasa T, Ye RD (2001) Constitutive activation of NF-kappa B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus involve G alpha(13) and RhoA. J Biol Chem 276:45979–45987

    PubMed  CAS  Google Scholar 

  • Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R (2002) Kaposi’s sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via G(i) and phospholipase C dependent signaling pathways. J Virol 76:1744–1752

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS (2000) The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogenactivated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60:4873–4880

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Gutkind JS (2004a) Does dysregulated expression of a deregulated viral GPCR trigger Kaposi’s sarcomagenesis? Faseb J 18:422–427

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Gutkind JS (2004b) Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5:998–1012

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y, Sausville EA, Sawai ET, Gutkind JS (2004c) Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci U S A 101:4821–4826

    PubMed  CAS  Google Scholar 

  • Spinetti G, Bernardini G, Camarda G, Mangoni A, Santoni A, Capogrossi MC, Napolitano M (2003) The chemokine receptor CCR8 mediates rescue from dexamethasone-induced apoptosis via an ERK-dependent pathway. J Leukoc Biol 73:201–207

    PubMed  CAS  Google Scholar 

  • Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, Pudney J, Anderson DJ, Ganem D, Haase AT (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71:715–719

    PubMed  CAS  Google Scholar 

  • Stodberg T, Deniz Y, Esteitie N, Jacobsson B, Mousavi-Jazi M, Dahl H, Zweygberg Wirgart B, Grillner L, Linde A (2002) A case of diffuse leptomeningeal oligoden drogliomatosis associated with HHV-6 variant A. Neuropediatrics 33:266–270

    PubMed  CAS  Google Scholar 

  • Streblow DN, Nelson JA (2003) Models of HCMV latency and reactivation. Trends Microbiol 11:293–295

    PubMed  CAS  Google Scholar 

  • Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278:50456–50465

    PubMed  CAS  Google Scholar 

  • Streblow DN, Kreklywich CN, Smith P, Soule JL, Meyer C, Yin M, Beisser P, Vink C, Nelson JA, Orloff SL (2005) Rat cytomegalovirus-accelerated transplant vascular sclerosis is reduced with mutation of the chemokine-receptor R33. Am J Transplant 5:436–442

    PubMed  CAS  Google Scholar 

  • Sturzl M, Blasig C, Schreier A, Neipel F, Hohenadl C, Cornali E, Ascherl G, Esser S, Brockmeyer NH, Ekman M, Kaaya EE, Tschachler E, Biberfeld P (1997) Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi’s sarcoma. Int J Cancer 72:68–71

    PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73:2232–2242

    PubMed  CAS  Google Scholar 

  • Tadagaki K, Nakano K, Yamanishi K (2005) Human herpesvirus 7 open reading frames U12 and U51 encode functional beta-chemokine receptors. J Virol 79:7068–7076

    PubMed  CAS  Google Scholar 

  • Takahashi K, Sonoda S, Higashi K, Kondo T, Takahashi H, Takahashi M, Yamanishi K (1989) Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J Virol 63:3161–3163

    PubMed  CAS  Google Scholar 

  • Tanaka K, Kondo T, Torigoe S, Okada S, Mukai T, Yamanishi K (1994) Human herpesvirus 7: another causal agent for roseola (exanthem subitum). J Pediatr 125:1–5

    PubMed  CAS  Google Scholar 

  • Tanaka-Taya K, Kondo T, Nakagawa N, Inagi R, Miyoshi H, Sunagawa T, Okada S, Yamanishi K (2000) Reactivation of human herpesvirus 6 by infection of human herpesvirus 7. J Med Virol 60:284–289

    PubMed  CAS  Google Scholar 

  • Telford EA, Watson MS, Aird HC, Perry J, Davison AJ (1995) The DNA sequence of equine herpesvirus 2. J Mol Biol 249:520–528

    PubMed  CAS  Google Scholar 

  • Thompson MP, Kurzrock R (2004) Epstein-Barr virus and cancer. Clin Cancer Res 10:803–821

    PubMed  CAS  Google Scholar 

  • Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350:1328–1337

    PubMed  CAS  Google Scholar 

  • Verbeek W, Frankel M, Miles S, Said J, Koeffler HP (1998) Seroprevalence of HHV-8 antibodies in HIV-positive homosexual men without Kaposi’s sarcoma and their clinical follow-up. Am J Clin Pathol 109:778–783

    PubMed  CAS  Google Scholar 

  • Verzijl D, Fitzsimons CP, Van Dijk M, Stewart JP, Timmerman H, Smit MJ, Leurs R (2004) Differential activation of murine herpesvirus 68-and Kaposi’s sarcoma-associated herpesvirus-encoded ORF74 G protein-coupled receptors by human and murine chemokines. J Virol 78:3343–3351

    PubMed  CAS  Google Scholar 

  • Vink C, Smit MJ, Leurs R, Bruggeman CA (2001) The role of cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines in manipulation of and evasion from the immune system. J Clin Virol 23:43–55

    PubMed  CAS  Google Scholar 

  • Wakeling MN, Roy DJ, Nash AA, Stewart JP (2001) Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor. J Gen Virol 82:1187–1197

    PubMed  CAS  Google Scholar 

  • Waldhoer M, Kledal TN, Farrell H, Schwartz TW (2002) Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76:8161–8168

    PubMed  CAS  Google Scholar 

  • Waldhoer M, Casarosa P, Rosenkilde MM, Smit MJ, Leurs R, Whistler JL, Schwartz TW (2003) The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J Biol Chem 278:19473–19482

    PubMed  CAS  Google Scholar 

  • Wang F, Rivailler P, Rao P, Cho Y (2001) Simian homologues of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356:489–497

    PubMed  CAS  Google Scholar 

  • Webster A (1991) Cytomegalovirus as a possible cofactor in HIV disease progression. J Acquir Immune Defic Syndr 4:S47–S52

    PubMed  Google Scholar 

  • Weir JP (1998) Genomic organization and evolution of the human herpesviruses. Virus Genes 16:85–93

    PubMed  CAS  Google Scholar 

  • Yamanishi K, Okuno T, Shiraki K, Takahashi M, Kondo T, Asano Y, Kurata T (1988) Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet 1:1065–1067

    PubMed  CAS  Google Scholar 

  • Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M, Sullivan L, Jenh CH, Narula SK, Chensue SW, Lira SA (2000) Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 191:445–454

    PubMed  CAS  Google Scholar 

  • Zhou YF, Shou M, Guzman R, Guetta E, Finkel T, Epstein SE (1995) Cytomegalovirus infection increases neointimal formation in the rat model of balloon injury. J Am Coll Cardiol 25:242a

    Google Scholar 

  • Zhou YF, Leon MB, Waclawiw MA, Popma JJ, Yu ZX, Finkel T, Epstein SE (1996) Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 335:624–630

    PubMed  CAS  Google Scholar 

  • Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vischer, H.F., Vink, C., Smit, M.J. (2006). A Viral Conspiracy: Hijacking the Chemokine System Through Virally Encoded Pirated Chemokine Receptors. In: Lane, T.E. (eds) Chemokines and Viral Infection. Current Topics in Microbiology and Immunology, vol 303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33397-5_6

Download citation

Publish with us

Policies and ethics