Skip to main content

HIV-1 Coreceptors and Their Inhibitors

  • Chapter
Chemokines and Viral Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 303))

Abstract

Entry of human immunodeficiency virus (HIV) into target cells is mediated by the viral Envelope glycoprotein (Env) and its coordinated interaction with a receptor (CD4) and a coreceptor (usually the chemokine receptors CCR5 or CXCR4). This review describes the identification of chemokine receptors as coreceptors for HIV-1 Env-mediated fusion, the determinants of chemokine receptor usage, and the impact of nonfunctional chemokine receptor alleles on HIV-1 resistance and disease progression. Due to the important role of chemokine receptors in HIV-1 entry, inhibitors of these coreceptors are good candidates for blocking entry and development of antiretroviral therapies. We discuss the different CCR5- and CXCR4-based antiretroviral drugs that have been developed thus far, highlighting the most promising drug candidates. Resistance to these coreceptor inhibitors as well as the impact of these drugs on clinical monitoring and treatment are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons E, Beddows S, Willingham T, Wu L, Koup R (2001) Adaptation to blockade of human immunodeficiency virus type 1 entry imposed by the anti-CCR5 monoclonal antibody 2D7. Virology 287:382–390

    PubMed  CAS  Google Scholar 

  2. Abel S, Van der Ryst E, Muirhead GJ, Rosario M, Edgington A, Weissgerber G (2003) Pharmacokinetics of single and multiple oral doses of UK-427,857—a novel CCR5 antagonist in healthy volunteers [abstr]. Program and abstracts of the 10th Conference on Retroviruses and Opportunistic Infections, 10–14 February 2003. Abstr 556

    Google Scholar 

  3. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958

    PubMed  CAS  Google Scholar 

  4. Ashorn PA, Berger EA, Moss B (1990) Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells. J Virol 64:2149–2156

    PubMed  CAS  Google Scholar 

  5. Baba M, Kanzaki N, Miyake H, Wang X, Takashima K, Teshima K, Shiraishi M, Iizawa Y (2005) TAK-652, a novel small molecule CCR5 antagonist with potent anti-HIV-1 activity. Program and abstracts of the 12th Conference on Retroviruses and Opportunistic Infections, 22–25 February 2005, Boston. Abstr 541

    Google Scholar 

  6. Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y, Meguro K, Fujino M (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA 96:5698–5703

    PubMed  CAS  Google Scholar 

  7. Bazan HA, Alkhatib G, Broder CC, Berger EA (1998) Patterns of CCR5, CXCR4, and CCR3 usage by envelope glycoproteins from human immunodeficiency virus type 1 primary isolates. J Virol 72:4485–4491

    PubMed  CAS  Google Scholar 

  8. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    PubMed  CAS  Google Scholar 

  9. Bieniasz PD, Fridell RA, Aramori I, Ferguson SS, Caron MG, Cullen BR (1997) HIV-1-induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 co-receptor. EMBO J 16:2599–2609

    PubMed  CAS  Google Scholar 

  10. Biti R, Ffrench R, Young J, Bennetts B, Stewart G, Liang T (1997) HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med 3:252–253

    PubMed  CAS  Google Scholar 

  11. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833

    PubMed  CAS  Google Scholar 

  12. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94:1925–1930

    PubMed  CAS  Google Scholar 

  13. Brambilla A, Villa C, Rizzardi G, Veglia F, Ghezzi S, Lazzarin A, Cusini M, Muratori S, Santagostino E, Gringeri A, Louie LG, Sheppard HW, Poli G, Michael NL, Pantaleo G, Vicenzi E (2000) Shorter survival of SDF1-3′A/3′A homozygotes linked to CD4+ T cell decrease in advanced human immunodeficiency virus type 1 infection. J Infect Dis 182:311–315

    PubMed  CAS  Google Scholar 

  14. Broder CC, Dimitrov DS, Blumenthal R, Berger EA (1993) The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expressing human CD4 can be overcome by a human cell component(s). Virology 193:483–491

    PubMed  CAS  Google Scholar 

  15. Chen CH, Matthews TJ, McDanal CB, Bolognesi DP, Greenberg ML(1995) Amolecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol 69:3771–3777

    PubMed  CAS  Google Scholar 

  16. Chen Z, Kwon D, Jin Z, Monard S, Telfer P, Jones MS, Lu CY, Aguilar RF, Ho DD, Marx PA (1998) Natural infection of a homozygous delta24 CCR5 redcapped mangabey with an R2b-tropic simian immunodeficiency virus. J Exp Med 188:2057–2065

    PubMed  CAS  Google Scholar 

  17. Chesebro B, Nishio J, Perryman S, Cann A, O’Brien W, Chen IS, Wehrly K (1991) Identification of human immunodeficiency virus envelope gene sequences influencing viral entry into CD4-positive HeLa cells, T-leukemia cells, and macrophages. J Virol 65:5782–5789

    PubMed  CAS  Google Scholar 

  18. Chesebro B, Wehrly K, Nishio J, Perryman S (1992) Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol 66:6547–6554

    PubMed  CAS  Google Scholar 

  19. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–148

    PubMed  CAS  Google Scholar 

  20. Clapham PR, Blanc D, Weiss RA (1991) Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by Simian immunodeficiency virus. Virology 181:703–715

    PubMed  CAS  Google Scholar 

  21. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815

    PubMed  CAS  Google Scholar 

  22. Cocchi F, DeVico AL, Garzino-Demo A, Cara A, Gallo RC, Lusso P (1996) The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med 2:1244–1247

    PubMed  CAS  Google Scholar 

  23. Connor RI, Mohri H, Cao Y, Ho DD(1993) Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J Virol 67:1772–1777

    PubMed  CAS  Google Scholar 

  24. [Reference deleted in proof]

    Google Scholar 

  25. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR (1997) Change in coreceptor use coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 185:621–628

    PubMed  CAS  Google Scholar 

  26. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2:581–587

    PubMed  Google Scholar 

  27. De Jong JJ, De Ronde A, Keulen W, Tersmette M, Goudsmit J (1992) Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. J Virol 66:6777–6780

    PubMed  Google Scholar 

  28. de Jong JJ, Goudsmit J, Keulen W, Klaver B, Krone W, Tersmette M, de Ronde A (1992) Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. JVirol 66:757–765

    Google Scholar 

  29. de Vreese K, Kofler-Mongold V, Leutgeb C, Weber V, Vermeire K, Schacht S, Anne J, de Clercq E, Datema R, Werner G (1996) Themolecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication. J Virol 70:689–696

    PubMed  Google Scholar 

  30. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O’Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862

    PubMed  CAS  Google Scholar 

  31. Demarest J, Adkison K, Sparks S, Shachoy-Clark A, Schell K, Reddy S, Fang L, O’Mara K, Shibayama S, Piscitelli S (2004) Single and multiple dose escalation study to investigate the safety, pharmacokinetics, and receptor binding of GW873140, a novel CCR5 receptor antagonist in healthy subjects. Program and abstracts of the 11th Conference on Retroviruses and Opportunistic Infections, 8–11 February 2004, San Francisco. Abstr 139

    Google Scholar 

  32. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    PubMed  CAS  Google Scholar 

  33. Deng HK, Unutmaz D, KewalRamani VN, Littman DR (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300

    PubMed  CAS  Google Scholar 

  34. Donzella GA, Schols D, Lin SW, Este JA, Nagashima KA, Maddon PJ, Allaway GP, Sakmar TP, Henson G, De Clercq E, Moore JP (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 4:72–77

    PubMed  CAS  Google Scholar 

  35. Doranz BJ, Filion LG, Diaz-Mitoma F, Sitar DS, Sahai J, Baribaud F, Orsini MJ, Benovic JL, Cameron W, Doms RW(2001) Safe use of the CXCR4 inhibitor ALX40-4C in humans. AIDS Res Hum Retroviruses 17:475–486

    PubMed  CAS  Google Scholar 

  36. Doranz BJ, Grovit-Ferbas K, Sharron MP, Mao SH, Goetz MB, Daar ES, Doms RW, O’Brien WA (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J Exp Med 186:1395–1400

    PubMed  CAS  Google Scholar 

  37. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158

    PubMed  CAS  Google Scholar 

  38. Dorr P, Macartney M, Rickett G, Smith-Burchnell C, Dobbs S, Mori J, Griffin P, Lok J, Irvine R, Westby M, Hitchcock C, Stammen B, et al (2003) UK-427,857, a novel small molecule HIV entry inhibitor is a specific antagonist of the chemokine receptor CCR5. Program and abstracts of the 10th Conference on Retroviruses and Opportunistic Infections, 10–14 February 2003, Boston. Abstr 12

    Google Scholar 

  39. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673

    PubMed  CAS  Google Scholar 

  40. Dragic T, Trkola A, Thompson DA, Cormier EG, Kajumo FA, Maxwell E, Lin SW, Ying W, Smith SO, Sakmar TP, Moore JP (2000) A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A 97:5639–5644

    PubMed  CAS  Google Scholar 

  41. Este JA, Cabrera C, Blanco J, Gutierrez A, Bridger G, Henson G, Clotet B, Schols D, De Clercq E (1999) Shift of clinical human immunodeficiency virus type 1 isolates from X4 to R5 and prevention of emergence of the syncytium-inducing phenotype by blockade of CXCR4. J Virol 73:5577–5585

    PubMed  CAS  Google Scholar 

  42. [Reference deleted in proof]

    Google Scholar 

  43. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877

    PubMed  CAS  Google Scholar 

  44. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O’Connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    PubMed  CAS  Google Scholar 

  45. Gorry PR, Zhang C, Wu S, Kunstman K, Trachtenberg E, Phair J, Wolinsky S, Gabuzda D (2002) Persistence of dual-tropic HIV-1 in an individual homozygous for the CCR5 Delta 32 allele. Lancet 359:1832–1834

    PubMed  CAS  Google Scholar 

  46. Gotoh K, Yoshimori M, Kanbara K, Tamamura H, Kanamoto T, Mochizuki K, Fujii N, Nakashima H (2001) Increase of R5 HIV-1 infection and CCR5 expression in T cells treated with high concentrations of CXCR4 antagonists and SDF-1. J Infect Chemother 7:28–36

    PubMed  CAS  Google Scholar 

  47. Hendel H, Henon N, Lebuanec H, Lachgar A, Poncelet H, Caillat-Zucman S, Winkler CA, Smith MW, Kenefic L, O’Brien S, Lu W, Andrieu JM, Zagury D, Schachter F, Rappaport J, Zagury JF (1998) Distinctive effects of CCR5, CCR2, and SDF1 genetic polymorphisms in AIDS progression. J Acquir Immune Defic Syndr Hum Retrovirol 19:381–386

    PubMed  CAS  Google Scholar 

  48. Hendrix C, Collier AC, Lederman M, Pollard R, Brown S, Glesby M, et al (2002) Calandra for the AMD-3100 HIV Study Group. AMD-3100 CXCR4 receptor blocker fails to reduce HIV viral load by > 1 log following 10-day continuous infusion. 9th Conference on Retroviruses and Opportunistic Infections, Seattle. Abstr 391

    Google Scholar 

  49. Hoffman TL, Stephens EB, Narayan O, Doms RW (1998) HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors. Proc Natl Acad Sci U S A 95:11360–11365

    PubMed  CAS  Google Scholar 

  50. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243

    PubMed  CAS  Google Scholar 

  51. Hwang SS, Boyle TJ, Lyerly HK, Cullen BR (1991) Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253:71–74

    PubMed  CAS  Google Scholar 

  52. Iizawa Y, Kanzaki N, Takashima K, Miyake H, Tagawa Y, Sugihara Y, Baba M (2003) Anti-HIV-1 activity of TAK-220, a small molecule CCR5 antagonist. Program and abstracts of the 10th Conference on Retroviruses and Opportunistic Infections, 10–14 February 2003, Boston. Abstr 11

    Google Scholar 

  53. Ioannidis JP, Rosenberg PS, Goedert JJ, Ashton LJ, Benfield TL, Buchbinder SP, Coutinho RA, Eugen-Olsen J, Gallart T, Katzenstein TL, Kostrikis LG, Kuipers H, Louie LG, Mallal SA, Margolick JB, Martinez OP, Meyer L, Michael NL, Operskalski E, Pantaleo G, Rizzardi GP, Schuitemaker H, Sheppard HW, Stewart GJ, Theodorou ID, Ullum H, Vicenzi E, Vlahov D, Wilkinson D, Workman C, Zagury JF, O’Brien TR (2001) Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3′A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data. Ann Intern Med 135:782–795

    PubMed  CAS  Google Scholar 

  54. Kanbara K, Sato S, Tanuma J, Tamamura H, Gotoh K, Yoshimori M, Kanamoto T, Kitano M, Fujii N, Nakashima H (2001) Biological and genetic characterization of a human immunodeficiency virus strain resistant to CXCR4 antagonist T134. AIDS Res Hum Retroviruses 17:615–622

    PubMed  CAS  Google Scholar 

  55. Kostrikis LG, Huang Y, Moore JP, Wolinsky SM, Zhang L, Guo Y, Deutsch L, Phair J, Neumann AU, Ho DD (1998) A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promotermutation. Nat Med 4:350–353

    PubMed  CAS  Google Scholar 

  56. Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, Mefford M, Piatak M Jr, Lifson JD, Salkowitz JR, Rodriguez B, Blauvelt A, Hartley O (2004) Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306:485–487

    PubMed  CAS  Google Scholar 

  57. Lee B, Doranz BJ, Rana S, Yi Y, Mellado M, Frade JM, Martinez AC, O’Brien SJ, Dean M, Collman RG, Doms RW (1998) Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. JVirol 72:7450–7458

    CAS  Google Scholar 

  58. Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci USA 96:5215–5220

    PubMed  CAS  Google Scholar 

  59. [Reference deleted in proof]

    Google Scholar 

  60. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377

    PubMed  CAS  Google Scholar 

  61. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348

    PubMed  CAS  Google Scholar 

  62. Maeda K, Nakata H, Koh Y, Miyakawa T, Ogata H, Takaoka Y, Shibayama S, Sagawa K, Fukushima D, Moravek J, Koyanagi Y, Mitsuya H (2004) Spiro-diketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 78:8654–8662

    PubMed  CAS  Google Scholar 

  63. Maeda K, Nakata H, Ogata H, Koh Y, Miyakawa T, Mitsuya H (2004) The current status of, and challenges in, the development of CCR5 inhibitors as therapeutics for HIV-1 infection. Curr Opin Pharmacol 4:447–452

    PubMed  CAS  Google Scholar 

  64. Maeda K, Yoshimura K, Shibayama S, Habashita H, Tada H, Sagawa K, Miyakawa T, Aoki M, Fukushima D, Mitsuya H (2001) Novel low molecular weight spirodike-topiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects on CCR5. J Biol Chem 276:35194–35200

    PubMed  CAS  Google Scholar 

  65. Maeda Y, Foda M, Matsushita S, Harada S (2000) Involvement of both the V2 and V3 regions of the CCR5-tropic human immunodeficiency virus type 1 envelope in reduced sensitivity to macrophage inflammatory protein 1alpha. J Virol 74:1787–1793

    PubMed  CAS  Google Scholar 

  66. Magierowska M, Theodorou I, Debre P, Sanson F, Autran B, Riviere Y, Charron D, Costagliola D (1999) Combined genotypes of CCR5, CCR2, SDF1, and HLA genes can predict the long-term nonprogressor status in human immunodeficiency virus-1-infected individuals. Blood 93:936–941

    PubMed  CAS  Google Scholar 

  67. McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM (1998) CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 352:866–870

    PubMed  CAS  Google Scholar 

  68. Meyer L, Magierowska M, Hubert JB, Theodorou I, van Rij R, Prins M, de Roda Husman AM, Coutinho R, Schuitemaker H (1999) CC-chemokine receptor variants, SDF-1 polymorphism, and disease progression in 720 HIV-infected patients. SEROCO Cohort. Amsterdam Cohort Studies on AIDS. Aids 13:624–626

    CAS  Google Scholar 

  69. Michael NL, Chang G, Louie LG, Mascola JR, Dondero D, Birx DL, Sheppard HW (1997) The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med 3:338–340

    PubMed  CAS  Google Scholar 

  70. Michael NL, Nelson JA, KewalRamani VN, Chang G, O’Brien SJ, Mascola JR, Volsky B, Louder M, White GC 2nd, Littman DR, Swanstrom R, O’Brien TR (1998) Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol 72:6040–6047

    PubMed  CAS  Google Scholar 

  71. Miedema F, Meyaard L, Koot M, Klein MR, Roos MT, Groenink M, Fouchier RA, Van’t Wout AB, Tersmette M, Schellekens PT, et al (1994) Changing virus-host interactions in the course of HIV-1 infection. Immunol Rev 140:35–72

    PubMed  CAS  Google Scholar 

  72. Moore JP, Doms RW (2003) The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci U S A 100:10598–10602

    PubMed  CAS  Google Scholar 

  73. Mosier DE, Picchio GR, Gulizia RJ, Sabbe R, Poignard P, Picard L, Offord RE, Thompson DA, Wilken J (1999) Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J Virol 73:3544–3550

    PubMed  CAS  Google Scholar 

  74. Mummidi S, Ahuja SS, Gonzalez E, Anderson SA, Santiago EN, Stephan KT, Craig FE, O’Connell P, Tryon V, Clark RA, Dolan MJ, Ahuja SK (1998) Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med 4:786–793

    PubMed  CAS  Google Scholar 

  75. Murakami T, Nakajima T, Koyanagi Y, Tachibana K, Fujii N, Tamamura H, Yoshida N, Waki M, Matsumoto A, Yoshie O, Kishimoto T, Yamamoto N, Nagasawa T (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 186:1389–1393

    PubMed  CAS  Google Scholar 

  76. Nakata H, Koh Y, Maeda K, Takaoka Y, Tamamura H, Fujii N, Mitsuya H (2005) Greater synergistic anti-HIV effects upon combinations of a CCR5 inhibitor AK602/ONO4128/GW873140 with CXCR4 inhibitors than with other anti-HIV drugs. Program and abstracts of the 12th Conference on Retroviruses and Opportunistic Infections, 22–25 February 2005, Boston. Abstr 543

    Google Scholar 

  77. O’Brien TR, Winkler C, Dean M, Nelson JA, Carrington M, Michael NL, White GC 2nd (1997) HIV-1 infection in a man homozygous for CCR5 delta 32. Lancet 349:1219

    PubMed  CAS  Google Scholar 

  78. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835

    PubMed  CAS  Google Scholar 

  79. Paxton WA, Martin SR, Tse D, O’Brien TR, Skurnick J, VanDevanter NL, Padian N, Braun JF, Kotler DP, Wolinsky SM, Koup RA (1996) Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 2:412–417

    PubMed  CAS  Google Scholar 

  80. Pozniak AL, Fatkenheuer G, Johnson M, Hoepelman IM, Rockstroh J, Goebel F, Abel S, James I, Rosario M, Medhurst C, et al (2003) Presented at the 43rd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago. Abstr H-443

    Google Scholar 

  81. Reeves JD, Gallo SA, Ahmad N, Miamidian JL, Harvey PE, Sharron M, Pohlmann S, Sfakianos JN, Derdeyn CA, Blumenthal R, Hunter E, Doms RW (2002) Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci USA 99:16249–16254

    PubMed  CAS  Google Scholar 

  82. Reeves JD, Miamidian JL, Biscone MJ, Lee FH, Ahmad N, Pierson TC, Doms RW (2004) Impact of mutations in the coreceptor binding site on human immunodeficiency virus type 1 fusion, infection, and entry inhibitor sensitivity. J Virol 78:5476–5485

    PubMed  CAS  Google Scholar 

  83. Reynes J, Rouzier R, Kanouni T, Baillat V, Baroudy B, Keung A, Hogan C, Markowitz M, Laughlin M (2002) Safety and antiviral effects of a CCR5 receptor antagonist in HIV-1-infected subjects. Presented at the 9th Conference on Retroviruses and Opportunistic Infections, Seattle. Abstr 1

    Google Scholar 

  84. Rizzardi GP, Morawetz RA, Vicenzi E, Ghezzi S, Poli G, Lazzarin A, Pantaleo G (1998) CCR2 polymorphism and HIV disease. Swiss HIV Cohort. Nat Med 4:252–253

    PubMed  CAS  Google Scholar 

  85. Ross TM, Cullen BR (1998) The ability of HIV type 1 to use CCR-3 as a coreceptor is controlled by envelope V1/V2 sequences acting in conjunction with a CCR-5 tropic V3 loop. Proc Natl Acad Sci U S A 95:7682–7686

    PubMed  CAS  Google Scholar 

  86. Rucker J, Edinger AL, Sharron M, Samson M, Lee B, Berson JF, Yi Y, Margulies B, Collman RG, Doranz BJ, Parmentier M, Doms RW (1997) Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J Virol 71:8999–9007

    PubMed  CAS  Google Scholar 

  87. [Reference deleted in proof]

    Google Scholar 

  88. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    PubMed  CAS  Google Scholar 

  89. Schols D, Este JA, Cabrera C, De Clercq E (1998) T-cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1alpha contains mutations in the envelope gp120 but does not show a switch in coreceptor use. J Virol 72:4032–4037

    PubMed  CAS  Google Scholar 

  90. Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E (1997) Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 186:1383–1388

    PubMed  CAS  Google Scholar 

  91. Schuitemaker H, Koot M, Kootstra NA, Dercksen MW, de Goede RE, van Steenwijk RP, Lange JM, Schattenkerk JK, Miedema F, Tersmette M (1992) Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 66:1354–1360

    PubMed  CAS  Google Scholar 

  92. Schurmann D, Rouzier R, Nougarede R, Reynes J, Fatkenheuer G, Raffi F, Michelet C, Tarral A, Hoffmann C, Kiunke J, Sprenger H, vanLier J, Sansone A, Jackson M, Laughlin M (2004) Antiviral activity of a CCR5 receptor antagonist. Presented at the 11th Conference on Retroviruses and Opportunistic Infections, San Francisco. Abstract 140LB

    Google Scholar 

  93. Sharron M, Pohlmann S, Price K, Lolis E, Tsang M, Kirchhoff F, Doms RW, Lee B (2000) Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood 96:41–49

    PubMed  CAS  Google Scholar 

  94. Shioda T, Levy JA, Cheng-Mayer C (1992) Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 89:9434–9438

    PubMed  CAS  Google Scholar 

  95. Simmons G, Reeves JD, Hibbitts S, Stine JT, Gray PW, Proudfoot AE, Clapham PR (2000) Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands. Immunol Rev 177:112–126

    PubMed  CAS  Google Scholar 

  96. Simmons G, Wilkinson D, Reeves JD, Dittmar MT, Beddows S, Weber J, Carnegie G, Desselberger U, Gray PW, Weiss RA, Clapham PR (1996) Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol 70:8355–8360

    PubMed  CAS  Google Scholar 

  97. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O’Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O’Brien SJ (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277:959–965

    PubMed  CAS  Google Scholar 

  98. Smyth RJ, Yi Y, Singh A, Collman RG (1998) Determinants of entry cofactor utilization and tropism in a dualtropic human immunodeficiency virus type 1 primary isolate. J Virol 72:4478–4484

    PubMed  CAS  Google Scholar 

  99. Speck RF, Wehrly K, Platt EJ, Atchison RE, Charo IF, Kabat D, Chesebro B, Goldsmith MA (1997) Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J Virol 71:7136–7139

    PubMed  CAS  Google Scholar 

  100. Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 98:12718–12723

    PubMed  CAS  Google Scholar 

  101. Takeuchi Y, Akutsu M, Murayama K, Shimizu N, Hoshino H (1991) Host range mutant of human immunodeficiency virus type 1: modification of cell tropism by a single point mutation at the neutralization epitope in the env gene. J Virol 65:1710–1718

    PubMed  CAS  Google Scholar 

  102. Tersmette M, de Goede RE, Al BJ, Winkel IN, Gruters RA, Cuypers HT, Huisman HG, Miedema F (1988) Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol 62:2026–2032

    PubMed  CAS  Google Scholar 

  103. Theodorou I, Meyer L, Magierowska M, Katlama C, Rouzioux C (1997) HIV-1 infection in an individual homozygous for CCR5 delta 32. Seroco Study Group. Lancet 349:1219–1220

    PubMed  CAS  Google Scholar 

  104. Tremblay CL, Giguel F, Hicks JL, Chou TC, Lizawa Y, Sugihara Y, Hirsch MS (2003) TAK-220, a novel small molecule inhibitor of CCR5 has favourable anti-HIV the interactions with other antiretrovirals in vitro. Program and abstracts of the 10th Conference on Retroviruses and Opportunistic Infections, 10–14 February 2003, Boston. Abstr 562

    Google Scholar 

  105. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP (1996) CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384:184–187

    PubMed  CAS  Google Scholar 

  106. Trkola A, Kuhmann SE, Strizki JM, Maxwell E, Ketas T, Morgan T, Pugach P, Xu S, Wojcik L, Tagat J, Palani A, Shapiro S, Clader JW, McCombie S, Reyes GR, Baroudy BM, Moore JP (2002) HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci U S A 99:395–400

    PubMed  CAS  Google Scholar 

  107. van Rij RP, Broersen S, Goudsmit J, Coutinho RA, Schuitemaker H (1998) The role of a stromal cell-derived factor-1 chemokine gene variant in the clinical course of HIV-1 infection. Aids 12:F85–90

    PubMed  Google Scholar 

  108. Veazey RS, Klasse PJ, Ketas TJ, Reeves JD, Piatak M Jr, Kunstman K, Kuhmann SE, Marx PA, Lifson JD, Dufour J, Mefford M, Pandrea I, Wolinsky SM, Doms RW, DeMartino JA, Siciliano SJ, Lyons K, Springer MS, Moore JP (2003) Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection. J ExpMed 198:1551–1562

    CAS  Google Scholar 

  109. Westby M, Smith-Burchnell C, Hamilton D, Mori J, Macartney M, Robas N, Irvine B, Fidock M, Perruccio F, Mills J, Burt K, Barber C, Stephenson P, Dorr P, Perros M (2005) Structurally-related HIV co-receptor antagonists bind to similar regions of CCR5 but have differential activities against UK-427,857-resistant primary isolates. Program and abstracts of the 12th Conference on Retroviruses and Opportunistic Infections, 22–25 February 2005, Boston. Abstr 96

    Google Scholar 

  110. Willey SJ, Reeves JD, Hudson R, Miyake K, Dejucq N, Schols D, De Clercq E, Bell J, McKnight A, Clapham PR (2003) Identification of a subset of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus strains able to exploit an alternative coreceptor on untransformed human brain and lymphoid cells. J Virol 77:6138–6152

    PubMed  CAS  Google Scholar 

  111. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O’Brien TR, Jacobson LP, Detels R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, O’Brien SJ (1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 279:389–393

    PubMed  CAS  Google Scholar 

  112. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, Cardoso AA, Desjardin E, Newman W, Gerard C, Sodroski J (1996) CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384:179–183

    PubMed  CAS  Google Scholar 

  113. Zhang Y, Lou B, Lal RB, Gettie A, Marx PA, Moore JP (2000) Use of inhibitors to evaluate coreceptor usage by simian and simian/human immunodeficiency viruses and human immunodeficiency virus type 2 in primary cells. J Virol 74:6893–6910

    PubMed  CAS  Google Scholar 

  114. Zhang YJ, Dragic T, Cao Y, Kostrikis L, Kwon DS, Littman DR, Kewal Ramani VN, Moore JP (1998) Use of coreceptors other than CCR5 by non-syncytium-inducing adult and pediatric isolates of human immunodeficiency virus type 1 is rare in vitro. J Virol 72:9337–9344

    PubMed  CAS  Google Scholar 

  115. Zhang YJ, Zhang L, Ketas T, Korber BT, Moore JP (2001) HIV type 1 molecular clones able to use the Bonzo/STRL-33 coreceptor for virus entry. AIDS Res Hum Retroviruses 17:217–227

    PubMed  Google Scholar 

  116. Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181

    PubMed  CAS  Google Scholar 

  117. Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM (1997) Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3:23–36

    PubMed  CAS  Google Scholar 

  118. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ray, N., Doms, R.W. (2006). HIV-1 Coreceptors and Their Inhibitors. In: Lane, T.E. (eds) Chemokines and Viral Infection. Current Topics in Microbiology and Immunology, vol 303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33397-5_5

Download citation

Publish with us

Policies and ethics