Skip to main content

Numerical simulation of aerodynamic problems with a Reynolds stress turbulence model

  • Conference paper
New Results in Numerical and Experimental Fluid Mechanics V

Summary

The Speziale-Sarkar-Gatski (SSG) Reynolds stress model is implemented into DLR’s Navier-Stokes solver FLOWer blended with the Wilcox stress-ω model in the near wall region. The length scale is supplied by Menter’s ω-equation. Results for 2D flows are presented for the transonic flow around the RAE 2822 airfoil, Cases 9 and 10, and the Aérospatiale A airfoil at β = 13.3°. Results for 3D flows are shown for the transonic flow around the ONERA M6 wing and the DLR-ALVAST wing-body configuration. Improvements are achieved with respect to predictions with the Wilcox κ-ω model concerning shock positions, trailing edge separation and the pressure distribution near the wing tip due to an improved resolution of the wing tip vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. S. Baldwin, H. Lomax: “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows”. AIAA-Paper 78-0257, 1978

    Google Scholar 

  2. J. Barche (Ed.): “Experimental Data Base for Computer Program Assessment”, AGARD-Report AGARD-AR-138, 1979

    Google Scholar 

  3. H. S. Dol, J. C. Kok, B. Oskam: “Turbulence Modelling for Leading-Edge Vortex Flows”. AIAA-Paper 2002-0843, 2002

    Google Scholar 

  4. A. Dumas, J.-L. Godard, L. Marin: “Analysis of ENIFAIR High Speed Test Results-An Evaluation of Interference Effects”. Workshop on European Research on Aerodynamic Engine/Airframe Integration for Transport Aircraft, DLR Braunschweig, Germany, 26-27 September 2000.

    Google Scholar 

  5. J. K. Fassbender: “Improved Robustness for Numerical Simulation of Turbulent Flows around Civil Transport Aircraft at Flight Reynolds Numbers”. Dissertation, Technische Universität Braunschweig, DLR Forschungsbericht, DLR-FB 2003-09, 2004

    Google Scholar 

  6. Haase, W., Aupoix, B., Bunge, U., Schwamborn, D. (Eds.): “FLOMANIA-Flow Physics Modelling-An Integrated Approach”, Notes on Numerical Fluid Mechanics, Springer to appear

    Google Scholar 

  7. N. Kroll, C. Rossow, D. Schwamborn, K. Becker, G. Heller: “MEGAFLOW-a numerical flow simulation tool for transport aircraft design”, ICAS 2002 Congress

    Google Scholar 

  8. M. Laban: “Aircraft Drag and Thrust Analysis (AIRDATA)”. Publishable Synthesis Report. NLR-TP-2000-473

    Google Scholar 

  9. F. R. Menter: “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”. AIAA Journal 32, 1994, pp. 1598–1605

    Article  Google Scholar 

  10. L. Prandtl: “Ober die ausgebildete Turbulenz”. ZAMM, 5, 1925, pp. 136–139

    MATH  Google Scholar 

  11. T. Rung, H. Lübcke, M. Franke, L. Xue, E Thiele, S. Fu: “Assessment of Explicit Algebraic Stress Models in Transonic Flows”. Proc. 4th Int. Symp. Engineering Turbulence Modelling and Measurements, Corsica, France, 1999, pp. 659–668

    Google Scholar 

  12. P. R. Spalart, S. R. Allmaras: “A One-Equation Turbulence Model for Aerodynamic Flows”. AIAA-Paper, 92-439, 1992

    Google Scholar 

  13. C. G. Speziale, S., Sarkar, T. B. Gatski: “Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach”. J. Fluid Mech. 227, 1991, pp. 245–272

    Article  MATH  Google Scholar 

  14. S. Wallin, A. V. Johansson: “An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows”. J. Fluid Mech. 403, 2000, pp. 89–132

    Article  MATH  MathSciNet  Google Scholar 

  15. D.C. Wilcox: “Reassessment of the Scale Determining Equation for Advanced Turbulence Models”. AIAA Journal 26, 1988, pp. 1299–1310

    Article  MATH  MathSciNet  Google Scholar 

  16. D.C. Wilcox: “Turbulence Modeling for CFD”. DCW Industries, La Cañada, USA, 2nd ed., 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisfeld, B. (2006). Numerical simulation of aerodynamic problems with a Reynolds stress turbulence model. In: Rath, HJ., Holze, C., Heinemann, HJ., Henke, R., Hönlinger, H. (eds) New Results in Numerical and Experimental Fluid Mechanics V. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33287-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33287-9_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33286-2

  • Online ISBN: 978-3-540-33287-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics