Skip to main content

Navier-Stokes Airfoil Computations with Automatic Transition Prediction using the DLR TAU Code - A Sensitivity Study

  • Conference paper

Summary

The hybrid DLR RANS solver TAU coupled to a transition prediction module was successfully applied to a single-element airfoil automatically taking into account the locations of laminar-turbulent transition. The experimentally measured transition locations could be reproduced with very high accuracy. A sensitivity study of the parameters of the coupling procedure was performed in order to investigate the behaviour of the coupled system with respect to the accuracy and robustness of the iteration procedure for the transition locations. The transition prediction coupling structure and the underlying algorithm are described. The functions of the coupling parameters and their impact on the transition location iteration and the convergence of the simulations are described and documented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horton, H. P., Stock, H. W., “Computation of Compressible, LamInar Botmdary Layers on Swept, Tapered Wings”, Journal of Aircraft, Vol.32, No. 6, 1995, pp. 1402–1405

    Article  Google Scholar 

  2. Kroll, N., Rossow, C.-C., Sehwambom, D., Becket, K., Holler, G., “MEGAFLOW-A Numerical Flow Simulation Tool For Transport Airerafl Design”, ICAS Congress 2002, Toronto (can), 09.-13.09.2002, ICAS, CD-Rom, pp. 1.105.1–1.105.20, 2002

    Google Scholar 

  3. Knunboin, A., Stock, H. W., “Laminar-turbulent Transition Modeling in Navier-SlDkes Solvers using Engineering Melhods”, Barcelona, ECCOMAS 2000-CD-Rom Proceedings

    Google Scholar 

  4. Krumboin, A., “Coupling of the DLR Navier-Stokos Solver FLOWer with an eN-Database Method for laminar-turbulent Transition Prediction on Airfoils”, Notes on Numerical Fluid Afechanics. Volume77, pp. 92–99, Germany 2000, Springer Verlag, 2002

    Google Scholar 

  5. Krumbein, A., “Transitional Flow Modeling and Application to High-Lift Multi-Element Airfoil Configurations”, Journal ofAircraft, Vol. 40, 2003, pp. 786–794

    Article  Google Scholar 

  6. Krumbein, A. et al., HiAer Deliverable D3.1-2: “Implementation of Iransition/turbuleneo models”, Technical Report, April 2004

    Google Scholar 

  7. Krumbein, A., “Automatic Transition Prediction and Application to High-Lift Multi-Element Airfoil Configurations”, AIAA-2004-2543, July 2004 (sub. to Journal of Aircraft)

    Google Scholar 

  8. Nobel, C., “Transitionsberechnung an einem 3D Rumptkörper”, Institutsberieht 2003/1, Institut für Strömungsmechanik, Technischo Universität Braunsehweig 2003

    Google Scholar 

  9. Nobel, C., Radespiel, R., Wolf, T., “Transition Prediction for 3D Flows Using a Reynolds-Averaged Navier-Stokes Code and N-Factor Methods”, AIAA-2003-3593

    Google Scholar 

  10. Radespiol, R., Graage, K., Brodersen, O., “Transition Predictions Using Reynolds-Averaged Navier-Stokes and Linear Stability Analysis Methods”; AIAA Paper 91-1641, 1991

    Google Scholar 

  11. Smith, A. M. O., Gamberoni, N., “Transition, Pressure Gradient and Stability Theory”, Douglas Aircraft Company, Long Beach, Calif. Rep. ES 26388, 1956

    Google Scholar 

  12. Somers, D. A., “Design and Experimental Results for a Natural-Laminar Flow Airfoil for General Aviation Applications”, NASA Technical Paper 1861, Scientific and Technical Information Branch, 1981

    Google Scholar 

  13. Stock, H. W., Degenhardt, E., “A simplified eN method for transition prediction in twodimensional incompressible boundary layers”, Zeitung für Flugwissenschaft und Weltraumforschung, Vol.13, 1989, pp.16–30

    Google Scholar 

  14. Stock, H. W., Haase, W., “A Feasibility Study eN Transition Prediction in Navier-Stokes Methods for Airfoils”, AIAA Journal, Vol.37, no. 10, 1999, pp. 1187–1196

    Article  Google Scholar 

  15. Stock, H. W., Haase, W., “Navier-Stokos Airfoil Computations with eN Transition Prediclion Including Transitional Flow Regions”, AIAA Jour., Vol.38, no. 11, 2000, pp.2059–2066

    Article  Google Scholar 

  16. Stock, H.W., “Airfoil Validation Using Coupled Navier-Stokes and eN Transition Prediction Methods”, Journal of Aircraft, Vol.39, No. 1, 2002, pp.51–58

    Article  Google Scholar 

  17. van Ingen, J. L., “A suggested Semi-Empirieal Method for the Calculation of the Boundary Layer Transition Region”, University of Delft, Dept. of Aerospace Engineering, Delft, The Netherlands, Rep. VTH-74, 1956

    Google Scholar 

  18. Walker, G. J., “Transitional Flow on Axial Turbomachino Blading”, AIAA Journal, Vol.27, No. 5, 1989, pp. 595–602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krumbein, A. (2006). Navier-Stokes Airfoil Computations with Automatic Transition Prediction using the DLR TAU Code - A Sensitivity Study. In: Rath, HJ., Holze, C., Heinemann, HJ., Henke, R., Hönlinger, H. (eds) New Results in Numerical and Experimental Fluid Mechanics V. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33287-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33287-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33286-2

  • Online ISBN: 978-3-540-33287-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics