Skip to main content

Processus de coagulation et fragmentation

  • Chapter
Book cover Modèles aléatoires

Part of the book series: Mathématiques & applications ((MATHAPPLIC,volume 57))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. D. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation) : a review of the mean-field theory for probabilists. Bernoulli, 5 (1): 3-48, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Babovsky. On a Monte Carlo scheme for Smoluchowski’s coagulation equa-tion. Monte Carlo Methods Appl., 5(1): 1-18, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.M. Ball et J. Carr. The discrete coagulation-fragmentation equations : exis-tence, uniqueness, and density conservation. J. Statist. Phys., 61(1-2): 203-234, 1990.

    Article  MathSciNet  Google Scholar 

  4. E. Buffet et J.V. Pulé. Polymers and random graphs. J. Statist. Phys., 64(1-2): 87-110, 1991.

    Article  MathSciNet  Google Scholar 

  5. J. Carr et F.P. da Costa. Instantaneous gelation in coagulation dynamics. Z. Angew. Math. Phys., 43(6): 974-983, 1992.

    Article  MathSciNet  Google Scholar 

  6. F.P. da Costa. Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation. J. Math. Anal. Appl., 192(3): 892-914, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Deaconu, N. Fournier et E. Tanré. A pure jump Markov process associated with Smoluchowski’s coagulation equation. Ann. Probab., 30(4): 1763-1796, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Deaconu et E. Tanré. Smoluchowski’s coagulation equation : probabilistic interpretation of solutions for constant, additive and multiplicative kernels. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29(3): 549-579, 2000.

    MathSciNet  Google Scholar 

  9. E. Debry, B. Sportisse et B. Jourdain. A stochastic approach for the simulation of the general dynamics equation for aerosols. J. Comput. Phys., 184: 649-669, 2003.

    Article  MATH  Google Scholar 

  10. R. Drake. A general mathematical survey of the coagulation equation. Int. Rev. Aerosol Phys. Chem., 3: 201-376, 1972.

    Google Scholar 

  11. E. Allen et P. Bastien. On coagulation and the stellar mass function. Astrophys. J., 452: 652-670, 1995.

    Article  Google Scholar 

  12. A. Eibeck et W. Wagner. Stochastic particle approximations for Smoluchowski’s coagulation equation. Ann. Appl. Probab., 11(4): 1137-1165, 2001.

    Article  MathSciNet  Google Scholar 

  13. M.H. Ernst. Exact solutions of the nonlinear Boltzmann equation and related kinetic equations. In Nonequilibrium phenomena, I, volume 10 de Stud. Statist. Mech., pages 51-119. North-Holland, Amsterdam, 1983.

    Google Scholar 

  14. I. Jeon. Existence of gelling solutions for coagulation-fragmentation equations. Comm. Math. Phys., 194(3): 541-567, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Jourdain. Nonlinear processes associated with the discrete Smoluchowski coagulation-fragmentation equation. Markov Process. Related Fields,9(1): 103-130, 2003.

    MATH  MathSciNet  Google Scholar 

  16. A. Lushnikov. Evolution of coagulating systems. J. Colloid Interface Sci., 45: 549-556, 1973.

    Article  Google Scholar 

  17. A.H. Marcus. Stochastic coalescence. Technometrics, 10: 133-143, 1968.

    Article  MathSciNet  Google Scholar 

  18. J.R. Norris. Smoluchowski’s coagulation equation : uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab., 9(1): 78-109, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Seinfeld. Atmospheric Chemistry and Physics of Air Pollution. Wiley, 1986.

    Google Scholar 

  20. J. Silk et T. Takahashi. A statistical model for the initial stellar mass function. Astrophys. J., 229: 242-256, 1979.

    Article  Google Scholar 

  21. J. Silk et S. White. The development of structure in the expanding universe. Astrophys. J., 228: L59-L62, 1978.

    Article  Google Scholar 

  22. M. Smoluchowski. Drei vorträge über diffusion, brownsche bewegung und koa-gulation von kolloidteilchen. Phys. Z., 17: 557-585, 1916.

    Google Scholar 

  23. S. Tavaré. Line-of-descent and genealogical processes, and their applications in population genetics models. Theoret. Population Biol., 26(2): 119-164, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Wetherill. Comparison of analytical and physical modeling of planetisimal accumulation. Icarus, 88: 336-354, 1990.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Processus de coagulation et fragmentation. In: Modèles aléatoires. Mathématiques & applications, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33284-8_12

Download citation

Publish with us

Policies and ethics