Control Structure and Multi-Resolution Techniques for Virtual Human Representation

  • Thomas di Giacomo
  • HyungSeok Kim
  • Laurent Moccozet
  • Nadia Magnenat-Thalmann
Part of the Mathematics and Visualization book series (MATHVISUAL)

A virtual human is a typical instance of articulated physical objects: it does not have only one shape but many, corresponding to all the possible postures that the underlying articulated skeleton can reach. For realistic rendering results, a high-quality texture is usually associated to the shape and skeleton structure. Controlling and animating a virtual human model requires simultaneously many graphics and computational resources.

The first part of this chapter discusses the control articulated skeleton structure and different approaches to build skeletons [10] and bind it to the geometry. The second part addresses the production of LoDs for virtual humans, both for the 3D shape (geometry) and the articulated skeleton (motion and animation).


Computer Graphic Medial Axis Computer Animation Virtual Human Character Animation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO/IEC JTC1/SC24 FCD 19774:200x. Humanoid animation (h-anim), 2004.
  2. 2.
    J. Ahn and K. Wohn. Motion level-of-detail: A simplification method on crowd scene. In Proc. Computer Animation and Social Agent, CASA’04, pages 129-137, 2004.Google Scholar
  3. 3.
    I. Albrecht, J. Haber, and H.-P. Seidel. Construction and animation of anatomically based human hand models. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 98-109, 2003.Google Scholar
  4. 4.
    B. Allen, B. Curless, and Z. Popovi ć . Articulated body deformation from range scan data. ACM Transactions on Graphics, 21(3):612-619, July 2002.Google Scholar
  5. 5.
    D. Anguelov, D. Koller, H.-C. Pang, P. Srinivasan, and S. Thrun. Recovering articulated object models from 3d range data. In Proceedings of the Uncertainty in Artificial Intelligence Conference (UAI2004), 2004.Google Scholar
  6. 6.
    D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. Scape: Shape completion and animation of people. In Proceedings of the SIGGRAPH Conference 2005,2005.Google Scholar
  7. 7.
    J. Assa, Y. Caspi, and D. Cohen-Or. Action synopsis: pose selection and illustration. ACM Transactions on Graphics, 24(3):667-676, 2005.CrossRefGoogle Scholar
  8. 8.
    G. Attardi, M. Betro, M. Forte, R. Gori, A. Guidazzoli, S. Imboden, and F. Mallegni. 3d facial re-construction and visualization of ancient egyptian mummies using spiral CT data. In SIGGRAPH99 Abstracts and Applications, pages 223-239, 1999.Google Scholar
  9. 9.
    A. Aubel, R. Boulic, and D. Thalmann. Real-time display of virtual humans: Levels of detail and impostors. IEEE Transactions on Circuits and Systems for Video Technology, 2:207-217, 2000.CrossRefGoogle Scholar
  10. 10.
    S. Biasotti, D. Attali, J.-D.l Boissonnat, H. Edelsbrunner, G. Elber, M. Mortara, G. Sanniti di Baja, M. Spagnuolo, and M. Tanase. Skeletal structures. In L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.Google Scholar
  11. 11.
    V. Blanz and T. Vetter. Construction and animation of anatomically based human hand models. In Proc. of ACM SIGGRAPH 99, pages 187-194, 1999.Google Scholar
  12. 12.
    J. Bloomenthal. Skeletal methods of shape manipulation. In Bob Werner, editor, Proceedings of the International Conference on Shape Modeling and Applications (SMI-99), pages 44-49, Los Alamitos, CA, March 1-4 1999. IEEE Computer Society.CrossRefGoogle Scholar
  13. 13.
    G.-P. Bonneau, G. Elber, S. Hahmann, and B. Sauvage. Multiresolution analysis. In L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.Google Scholar
  14. 14.
    R. Boulic, T. Capin, Z. Huang, P. Kalra, B. Linterrnann, N. Magnenat-Thalmann, L. Moccozet, T. Molet, 1. Pandzic, K. Saar, A. Schmitt, J. Shen, and D. Thalmann. The humanoid environment for interactive animation of multiple deformable human characters. Computer Graphics Forum, 14(3):337-348, August 1995.Google Scholar
  15. 15.
    R. Boulic, R. Mas, and D. Thalmann. Complex character positioning based on a compatible flow model of multiple supports. In IEEE Transactions on Visualization and Computer Graphics, volume 3, 1997.Google Scholar
  16. 16.
    R. Boulic and D. Thalmann. Combined direct and inverse kinematic control for articulated figure motion editing. Computer Graphics Forum, 2, 1992.Google Scholar
  17. 17.
    D. Brogan, K. Granata, and P. Sheth. Space-time constraints for biomechanical movements. In IASTED International Conference on Applied Modeling and Simulation (AMS), 2002.Google Scholar
  18. 18.
    D. Brogan, R. Metoyer, and J. Hodgins. Dynamically simulated characters in virtual environments. In IEEE Computer Graphics and Applications, pages 58-69, 1998.Google Scholar
  19. 19.
    N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing motion dynamics in key frame animation. Commun. ACM, 19(10):564-569, 1976.CrossRefGoogle Scholar
  20. 20.
    M. P. Cani-Gascuel and M. Desbrun. Animation of deformable models using implicit surfaces. IEEE Transactions on Visualization and Computer Graphics, 3(1):39-50, jan - mar 1997.CrossRefGoogle Scholar
  21. 21.
    S. Capell, M. Burkhart, B. Curless, T. Duchamp, and Z. Popovi ć . Physically based rigging for deformable characters. In Proc. Symposium on Computer Animation, SCA’05, pages 301-310, 2005.Google Scholar
  22. 22.
    S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovi ć . Interactive skeleton-driven dynamic deformations. In Proc. SIGGRAPH’02, pages 41-47, 2002.Google Scholar
  23. 23.
    M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann, and D. Thalmann. Survey: Motion control of virtual humans. IEEE Computer Graphics & Applications, 18(5):24-31, 1998.CrossRefGoogle Scholar
  24. 24.
    A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive multiresolution surface viewing. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 91-98. ACM Press, 1996.Google Scholar
  25. 25.
    J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for deformable animated characters. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques, pages 243-252. ACM Press, 1989.Google Scholar
  26. 26.
    D. Chen and D. Zeltzer. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. In Computer Graphics (Proceedings of SIGGRAPH 92), pages 89-98, July 1992.Google Scholar
  27. 27.
    J. Cohen, M. Olano, and D. Manocha. Appearance-perserving simplification. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 115-122. ACM Press, 1998.Google Scholar
  28. 28.
    G. Collins and A. Hilton. Modelling for character animation. Software Focus, 2(2):44-51,2001.CrossRefGoogle Scholar
  29. 29.
    B. Cozot, F. Multon, B. Valton, and B. Arnaldi. Animation levels of detail design for real-time virtual human. In Proc. Eurographics Workshop on Computer Animation and Simulation, EGCAS’99, pages 35-44, 1999.Google Scholar
  30. 30.
    S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geopostors: A real-time geometry/impostor crowd rendering system. In Proc. ACM SIGGRAPH Symp. Interactive 3D Graphics and Games, pages 95-102, 2005.Google Scholar
  31. 31.
    H. Du and H. Qin. Medial axis extraction and shape manipulation of solid objects using parabolic pdes. In Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications 2004, pages 25-35, 2004.Google Scholar
  32. 32.
    P. Faloutsos, M. Van de Panne, and D. Terzopoulos. Composable controllers for physics-based character animation. In SIGGRAPH’01, pages 251-260, 2001.Google Scholar
  33. 33.
    P. Faloutsos, M. VanDePanne, and D. Terzopoulos. Dynamic freeform deformations for animation synthesis. IEEE Transactions on Visualization and Computer Graphics, 3(3):201-214, 1997.CrossRefGoogle Scholar
  34. 34.
    N. Gagvani and D. Silver. Animating volumetric models. Graphical models, 63(6):443-458, 2001.CrossRefGoogle Scholar
  35. 35.
    M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 209-216. ACM Press/Addison-Wesley Publishing Co., 1997.Google Scholar
  36. 36.
    M. Garland and P. Heckbert. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the conference on Visualization ’98, pages 263-269. IEEE Computer Society Press, 1998.Google Scholar
  37. 37.
    J. Granieri, J. Crabtree, and N. Badler. Production and playback of human figure motion for visual simulation. ACM Transactions on Modeling and Computer Simulation, 5(3), 1995.Google Scholar
  38. 38.
    Z. Guo and K. C. Wong. Skinning with deformable chunks. Computer Graphics Forum, 24(3):373-382, 2005.CrossRefGoogle Scholar
  39. 39.
    J. Hamill, R. McDonnell, S. Dobbyn, and C. O’Sullivan. Perceptual evaluation of im-postor representations for virtual humans and buildings. Computer Graphics Forum, 24(3),2005.Google Scholar
  40. 40.
    D. Herbison-Evans. Real-time animation of human figure drawings with hidden-lines omitted. IEEE Computer Graphics & Applications, 2(9):27-33, 1982.CrossRefGoogle Scholar
  41. 41.
    J. Hodgins, W. Wooten, D. Brogan, and J. O’Brien. Animating human athletics. In SIGGRAPH’95, pages 71-78, 1995.Google Scholar
  42. 42.
    D. James and C. Twigg. Skinning mesh animations. ACM Transactions on Graphics, 24(3),2005.Google Scholar
  43. 43.
    K. Kahler, J. Haber, and H.-P. Seidel. Reanimating the dead: Reconstruction of expressive faces from skull data. ACM Transactions on Graphics, 22(3):554-561, 2003.CrossRefGoogle Scholar
  44. 44.
    P. Kalra, N. Magnenat-Thalmann, L. Moccozet, G. Sannier, A. Aubel, and D. Thalmann. Real-time animation of realistic virtual humans. In IEEE Computer Graphics and Applications, volume 18, 1998.Google Scholar
  45. 45.
    P. Kanongchaiyos and Y. Shinagawa. Articulated reeb graphs for interactive skeleton animation. In Proceeding Modeling Multimedia Information and System, pages 451-467, october 2000.Google Scholar
  46. 46.
    S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics, 22(3):954-961, July 2003.CrossRefGoogle Scholar
  47. 47.
    H. Kim, C. Joslin, T. Di Giacomo, S. Garchery, and N. Magnenat-Thalmann. Adaptation mechanism for three dimensional content within the mpeg-21 framework. In Computer Graphics International 2004, June 2004.Google Scholar
  48. 48.
    H. Kim and K. Wohn. Multiresolution model generation with geometry and texture. Proceedings of Seventh International Conference on Virtual Systems and Multimedia, pages 780-789, 2001.Google Scholar
  49. 49.
    S. Kiss. Computer animation for articulated 3d characters. Technical Report 45, Twente University, 2002.
  50. 50.
    E. Kokkevis, D. Metaxas, and N. Badler. User-controlled physics-based animation for articulated figures. In Computer Animation, 1996.Google Scholar
  51. 51.
    K. Komatsu. Human skin model capable of natural shape variation. The Visual Computer, 3(5):265-271, 1988.CrossRefGoogle Scholar
  52. 52.
    L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proc. SIGGRAPH’02, pages 473-482, 2002.Google Scholar
  53. 53.
    P. Kry, D. James, and D. Pai. Eigenskin: Real time large deformation character skinning in hardware. In ACM SIGGRAPH Symposium on Computer Animation, pages 153-160, July 2002.Google Scholar
  54. 54.
    S. Kshirsagar, S. Garchery, G. Sannier, and N. Magnenat-Thalmann. Synthetic faces : Analysis and applications. International Journal of Imaging Systems and Technology, 13(1):65-73, June 2003.CrossRefGoogle Scholar
  55. 55.
    T. Kurihara and N. Miyata. Modeling deformable human hands from medical images. In Proc. of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2004.Google Scholar
  56. 56.
    F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. In ACM Solid Modeling’99, Ann Arbor, Michigan, USA, June 1999.Google Scholar
  57. 57.
    J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard. Interactive control of avatars animated with human motion data. In Proc. SIGGRAPH’02, pages 491-500, 2002.Google Scholar
  58. 58.
    W. Lee, J. Gu, and N. Magnenat-Thalmann. Generating animatable 3d virtual humans from photographs. Computer Graphics Forum, 19(3), August 2000.Google Scholar
  59. 59.
    J. P. Lewis, M. Cordner, and N. Fong. Pose space deformations: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, pages 165-172, July 2000.Google Scholar
  60. 60.
    J.-M. Lien and N. M. Amato. Simultaneous shape decomposition and skeletonization using approximate convex decomposition. Technical report, Texas A&M University, 2005.
  61. 61.
    P. Lindstrom and G. Turk. Image-driven simplification. ACM Trans. Graph., 19(3):204-241,2000.Google Scholar
  62. 62.
    P. Liu, F. Wu, W. Ma, R. Liang, and M. Ouhyoung. Automatic animation skeleton construction using repulsive force field. In Pacific Graphics 2003, page 409, october 2003.Google Scholar
  63. 63.
    G. Loy, J. Sullivan, and S. Carlsson. Pose-based clustering in action sequences. In Proc. Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, HLK’03, page 66, 2003.Google Scholar
  64. 64.
    R. MacCracken and K. Joy. Free-form deformations with lattices of arbitrary topology. In Proc. SIGGRAPH’96, pages 181-188, 1996.Google Scholar
  65. 65.
    P. Maciel and P. Shirley. Visual navigation of large environments using textured clusters. In Proceedings of the 1995 symposium on Interactive 3D graphics, pages 95-ff. ACM Press, 1995.Google Scholar
  66. 66.
    N. Magnenat-Thalmann, R. Laperriere, and D. Thalmann. Joint-dependent local deformations for hand animation and object grasping. In Graphics Interface ’88, pages 26-33, June 1988.Google Scholar
  67. 67.
    D. Manocha and Y. Zhu. A fast algorithm and system for inverse kinematics of general serial manipulators. In IEEE Conference on Robotics and Automation, 1994.Google Scholar
  68. 68.
    L. Moccozet, F. Dellas, N. Magnenat-Thalmann, S. Biasotti, M. Mortara, B. Falcidieno, P. Min, and R. Veltkamp. Animatable human body model reconstruction from 3d scan data using templates. In Proc. CapTech Workshop on Modelling and Motion Capture Techniques for Virtual Environments, CAPTECH2004, 2004.Google Scholar
  69. 69.
    L. Moccozet and N. Magnenat-Thalmann. Dirichlet free-form deformations and their application to hand simulation. In Proc. Computer Animation, CA’97, pages 93-102, 1997.Google Scholar
  70. 70.
    L. Moccozet and N. Magnenat-Thalmann. Multilevel deformation model applied to hand simulation. In Proc. Virtual Systems and MultiMedia, VSMM’97, pages 119-128, 1997.Google Scholar
  71. 71.
    A. Mohr and M. Gleicher. Building efficient, accurate character skins from examples. ACM Transactions on Graphics, 22(3):562-568, July 2003.CrossRefGoogle Scholar
  72. 72.
    F. Multon, L. France, M.-P. Cani, and G. Debunne. Computer animation of human walking: a survey. The Journal of Visualization and Computer Animation, 10:39-54, 1999.CrossRefGoogle Scholar
  73. 73.
    S. Oh, H. Kim, N. Magnenat-Thalmann, and K. Wohn. Generating unified model for dressed virtual humans. The Visual Computer, 21(8):522-531, 2005.CrossRefGoogle Scholar
  74. 74.
    M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 359-368. ACM Press/Addison-Wesley Publishing Co., 2000.Google Scholar
  75. 75.
    S. Park and J. K. Hodgins. Capturing and animating skin deformation in human motion. ACM Trans. Graph., 25(3):881-889, 2006.Google Scholar
  76. 76.
    W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992.Google Scholar
  77. 77.
    S. Redon, N. Galoppo, and M. Lin. Adaptive dynamics of articulated bodies. In Proc. SIGGRAPH’05, pages 936-945, 2005.Google Scholar
  78. 78.
    L. Reveret, L. Favreau, C. Depraz, and M.-P. Cani. Morphable model of quadrupeds skeletons for animating 3d animals. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005), 2005.Google Scholar
  79. 79.
    T. Rhee, U. Neumann, and J. P. Lewis. Human hand modeling from surface anatomy. In Proc. of the 2006 Symposium on Interactive 3D graphics and games, 2006.Google Scholar
  80. 80.
    C. Rose, B. Guenter, B. Bodenheimer, and M. F. Cohen. Efficient generation of motion transitions using space-time constraints. Computer Graphics, 30(Annual Conference Series):147-154, 1996.Google Scholar
  81. 81.
    P. Sand, L. McMillan, and J. Popovi ć . Continuous capture of skin deformation. ACM Transactions on Graphics, 22(3):578-586, July 2003.CrossRefGoogle Scholar
  82. 82.
    P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive meshes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 409-416. ACM Press, 2001.Google Scholar
  83. 83.
    G. Schaufler. Per-object image warping with layered impostors. In Proceedings of the 9th Eurographics Workshop on Rendering ’98, pages 145-156, June 1998.Google Scholar
  84. 84.
    F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May. Anatomy-based modeling of the human musculature. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, pages 163-172, August 1997.Google Scholar
  85. 85.
    H. Seo, F. Cordier, and N. Magnenat-Thalmann. Synthesizing animatable body models with parameterized shape modifications. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 2003.Google Scholar
  86. 86.
    H. Seo and N. Magnenat-Thalmann. An automatic modeling of human bodies from sizing parameters. In ACM SIGGRAPH Symposium on Interactive 3D Graphics, pages 19-26, 2003.Google Scholar
  87. 87.
    F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulaiton for real-time visualization of urban scenery. In Proceedings of Eurographics ’97, pages 207-218, September 1997.Google Scholar
  88. 88.
    K. Singh and E. Kokkevis. Skinning characters using surface oriented free-form deformations. In Proc. Graphics Interface, GI’00, pages 35-42, 2000.Google Scholar
  89. 89.
    S. Kshirsagar, S. Garchery, and N. Magnenat-Thalmann. Feature point based mesh deformation applied to mpeg-4 facial animation. In Proceedings Deform’2000, Workshop on Virtual Humans by IFIP Working Group 5.10 (Computer Graphics and Virtual Worlds), pages 23-34. Kluwer Academic Publishers, November 2000.Google Scholar
  90. 90.
    P. P. Sloan, C. Rose, and M. Cohen. Shape by example. In ACM SIGGRAPH Symposium on Interactive 3D Graphics, 2001. 91. J. Starck, G. Collins, R. Smith, A. Hilton, and J. Illingworth. Animated statues. Journal of Machine Vision Applications, 2002.Google Scholar
  91. 92.
    F. Tecchia, C. Loscos, and Y. Chrysanthou. Image-based crowd rendering. IEEE Computer Graphics & Applications, 22(2):36-43, 2002.CrossRefGoogle Scholar
  92. 93.
    M. Teichmann and S. Teller. Assisted articulation of closed polygonal models. In Proc. 9th Eurographics Workshop on Animation and Simulation, pages 87-102, Lisbon, Portugal, August 31 - September 1 1998.Google Scholar
  93. 94.
    D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. Computer Graphics, 22(4):269-278, 1988.CrossRefGoogle Scholar
  94. 95.
    D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Computer Graphics, 21(4):205-214, 1987.CrossRefGoogle Scholar
  95. 96.
    D. Terzopoulos and A. Witkin. Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications, 8(6):41-51, 1988.CrossRefGoogle Scholar
  96. 97.
    D. Thalmann, N. Magnenat-Thalmann, and P. Bergeron. Dream flight: a fictional film produced by 3d computer animation. In Proceedings Computer Graphics’82, pages 353-368, 1982.Google Scholar
  97. 98.
    D. Thalmann, J. Shen, and E. Chauvineau. Fast realistic human body deformations for animation and vr applications. In Computer Graphics International 1996, 1996.Google Scholar
  98. 99.
    D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models, 62(5):353-388, 2000.CrossRefGoogle Scholar
  99. 100.
    R. Turner and E. Gobbetti. Interactive construction and animation of layered elastically deformable characters. Computer Graphics Forum, 17(2):135-152, 1998.CrossRefGoogle Scholar
  100. 101.
    P. Volino and N. Magnenat-Thalmann. Comparing efficiency of integration methods for cloth simulation. In Computer Graphics International, CGI’01, pages 265-274, 2001.Google Scholar
  101. 102.
    L. Wade and R. E. Parent. Automated generation of control skeletons for use in animation. The Visual Computer, 18(2):97-110, March 2002.CrossRefGoogle Scholar
  102. 103.
    A. Watt and M. Watt. Advanced animation and rendering techniques. Addison-Wesley, 1992.Google Scholar
  103. 104.
    J. Wilhelms. Animals with anatomy. IEEE Computer Graphics and Applications, 17(3):22-30, 1997.CrossRefGoogle Scholar
  104. 105.
    A. Witkin and M. Kass. Space-time constraints. In SIGGRAPH’88, pages 159-168, 1988.Google Scholar
  105. 106.
    W. Wooten and J. Hodgins. Transitions between dynamically simulated motions: Leaping, tumbling, landing, and balancing, 1997. Animation Sketch, Siggraph’97.Google Scholar
  106. 107.
    F.-C. Wu, W.-C. Ma, P.-C. Liou, R.-H Laing, and M. Ouhyoung. Skeleton extraction of 3d objects with visible repulsive force. In Computer Graphics Workshop 2003, Taiwan, 2003.Google Scholar
  107. 108.
    S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. A simple approach to interactive freeform shape deformations. In Proc. Pacific Graphics, PG’02, pages 471-474, 2002.Google Scholar
  108. 109.
    S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh deformations. In Proc. ACM Solid Modeling, pages 247-253, 2003.Google Scholar
  109. 110.
    X. Zhao. Kinematic Control of Human Postures for Task Simulation. PhD thesis, University of Pennsylvania, 1996.Google Scholar
  110. 111.
    V. B. Zordan, B. Celly, B. Chiuand, and P. C. Dilorenzo. Breathe easy: Model and control of human respiration for computer animation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 29-38, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas di Giacomo
    • 1
  • HyungSeok Kim
  • Laurent Moccozet
  • Nadia Magnenat-Thalmann
  1. 1.MIRAlabUniversity of GenevaSwitzerland

Personalised recommendations