Skip to main content

Morphological Representations of Scalar Fields

  • Chapter

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

We consider the problem of representing and extracting morphological information from scalar fields. We focus on the analysis and comparison of algorithms for morphological representation of both 2D and 3D scalar fields. We review algorithms which compute a decomposition of the domain of a scalar field into a Morse and Morse-Smale complex and algorithms which compute a topological representation of the level sets of a scalar field, called a contour tree. Extensions of the morphological representations discussed in the chapter are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Attene, S. Biasotti, and M. Spagnuolo. Shape understanding by contour-driven retiling. The Visual Computer, 19(2-3):127-138, 2003.

    MATH  Google Scholar 

  2. U. Axen. Topological Analysis using Morse Theory and Auditory Display. PhD thesis, University of Illinois at Urbana-Champaign, 1998.

    Google Scholar 

  3. U. Axen. Computing Morse functions on triangulated manifolds. In SODA ’99: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algoritms 1999, pages 850-851. ACM Press, 1999.

    Google Scholar 

  4. C. L. Bajaj, V. Pascucci, and D. R. Shikore. Visualization of scalar topology for structural enhancement. In Proceedings IEEE Visualization’98, pages 51-58. IEEE Computer Society, 1998.

    Google Scholar 

  5. C. L. Bajaj and D. R. Shikore. Topology preserving data simplification with error bounds. Computers and Graphics, 22(1):3-12, 1998.

    Google Scholar 

  6. T. F. Banchoff. Critical points and curvature for embedded polyhedra. Journal of Differential Geometry, 1:245-256, 1967.

    MATH  MathSciNet  Google Scholar 

  7. T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly, 77:475-485, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In Jean Serra and Pierre Soille, editors, Proc. Mathematical Morphology and its Applications to Image Processing, pages 69-76, Fontainebleau, September 1994. Kluwer Ac. Publ.

    Google Scholar 

  9. P. Bhahaniramka, R. Wenger, and R. Crawfi. Iso-contouring in higher dimensions. In IEEE Visualization 2000, pages 267-273, 2000.

    Google Scholar 

  10. S. Biasotti. Computational topology methods for shape modelling applications. PhD thesis, University of Genova, May 2004.

    Google Scholar 

  11. S. Biasotti. Reeb graph representation of surfaces with boundary. In SMI ’04: Proceedings of Shape Modeling Applications 2004, pages 371-374, Los Alamitos, Jun 2004. IEEE Computer Society.

    Chapter  Google Scholar 

  12. S. Biasotti, D. Attali, J.-D. Boissonnat, H. Edelsbrunner, G. Elber, M. Mortasa, G. Sanniti di Baja, M. Spagnuolo, and M. Tanase. Skeletal structures. In Shape Analysis and Structuring. Springer, 2007.

    Google Scholar 

  13. S. Biasotti, B. Falcidieno, and M. Spagnuolo. Extended Reeb graphs for surface understanding and description. Lecture Notes in Computer Science, 1953:185-197, 2000.

    Article  Google Scholar 

  14. S. Biasotti, B. Falcidieno, and M. Spagnuolo. Surface Shape Understanding based on Extended Reeb Graphs, pages 87-103. John Wiley & Sons, 2004.

    Google Scholar 

  15. R. Bott. Morse Theory Indomitable. Publ Math.I.H.E.S., 68:99-117, 1998.

    Google Scholar 

  16. R.L. Boyell and H. Ruston. Hybrid techniques for real-time radar simulation. In Proceedings of the 1963 Fall Joint Computer Conference, Nov 1963.

    Google Scholar 

  17. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data structure for two-dimensional Morse functions. In G. Turk, J. van Wijk, and R. Moorhead, editors, Proceedings IEEE Visualization 2003, pages 139-146. IEEE Computer Society, October 2003.

    Google Scholar 

  18. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4):385-396, July/August 2004.

    Article  Google Scholar 

  19. P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in hierarchical topological models. In International Conference on Shape Modeling and Applications, pages 300-309. IEEE Computer Society, 2005.

    Google Scholar 

  20. H. Carr. Topological Manipulation of isosurfaces. PhD thesis, The University of British Columbia, 2004.

    Google Scholar 

  21. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In SODA ’00: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algoritms 2000, pages 918-926. ACM Press, 2000.

    Google Scholar 

  22. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computational Geometry : Theory and Applications, 24:75-94, 2003.

    MATH  MathSciNet  Google Scholar 

  23. Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-sensitive construction of contour trees using monotone paths. Computational Geometry: Theory and Applications, 30:165-195, 2005.

    MATH  MathSciNet  Google Scholar 

  24. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in Reeb graphs of 2-manifolds. In SCG ’03: Proceedings of the 19th Annual Symposium on Computational Geometry 2003, pages 344-350. ACM Press, 2003.

    Google Scholar 

  25. M. Couprie and G. Bertrand. Topological grayscale watershed transformation. In Vision Geometry V. Proceedings SPIE 3168, pages 136-146. SPIE, 1997.

    Google Scholar 

  26. J. Cox, D. B. Karron, and N. Ferdous. Topological zone organization of scalar volume data. Journal of Mathematical Imaging and Vision, 18:95-117, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and E. Puppo. Morphologydriven simplification and multi-resolution modeling of terrains. In E. Hoel and P. Rigaux, editors, Proceedings ACM-GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pages 63-70. ACM Press, November 2003.

    Google Scholar 

  28. E. Danovaro, L. De Floriani, and M. M. Mesmoudi. Topological analysis and characterization of discrete scalar fields. In T. Asano, R. Klette, and C. Ronse, editors, Theoretical Foundations of Computer Vision, Geometry, Morphology, and Computational Imaging, volume 2616 of Lecture Notes on Computer Science, pages 386-402. Springer Verlag, 2003.

    Google Scholar 

  29. E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. A multi-resolution representation for terrain morphology. In M. Raubal, H.J. Miller, A.U. Frank, and M.F. Goodchild, editors, Geographic Information Science, 4th International Conference, GIScience 2006, M ünster, Germany, September 20-23, 2006, Proceedings, volume 4197 of Lecture Notes in Computer Science, pages 33-46. Springer, 2006.

    Google Scholar 

  30. M. de Berg and M. van Kreveld. Trekking in the Alps without freezing or getting tired. Algorithmica, 19:306-323, 1997.

    Article  MathSciNet  Google Scholar 

  31. L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexes. In R. H. Guting, D. Papadias, and F. Lochovsky, editors, Advances in Spatial Databases, volume 1651 of Lecture Notes in Computer Science, pages 33-51. 1999.

    Google Scholar 

  32. L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multi-resolution modeling. In W. Strasser, R. Klein, and R. Rau, editors, Geometric Modeling: Theory and Practice, pages 302-323. Springer-Verlag, 1997.

    Google Scholar 

  33. L. De Floriani, E. Puppo, and P. Magillo. Applications of computational geometry to Geographic Information Systems. In J. R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, chapter 7, pages 333-388. Elsevier Science, 1999.

    Google Scholar 

  34. Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart. Spectral surface quadrangulation. ACM Transactions on Graphics, 25(3):1057-1066, July 2006.

    Article  Google Scholar 

  35. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds. In Proceedings 19th ACM Symposium on Computational Geometry, pages 361-370, 2003.

    Google Scholar 

  36. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proceedings 17th ACM Symposium on Computational Geometry, pages 70-79. ACM Press, 2001.

    Google Scholar 

  37. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30:87-107, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Forman. Morse theory for cell complexes. Advances.in Mathematics, 134:90-145, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  39. R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90-145, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Gerstner and R. Pajarola. Topology-preserving and controlled topology simplifying multi-resolution isosurface extraction. In Proceedings IEEE Visualization 2000, pages 259-266, 2000.

    Google Scholar 

  41. C. Giertsen, A. Halvorsen, and P.R. Flood. Graph-directed modelling from serial sections. The Visual Computer, 6:284-290, 1990.

    Article  Google Scholar 

  42. H. B. Griffiths. Surfaces. Cambridge University Press, 1976.

    Google Scholar 

  43. V. Guillemin and A. Pollack. Differential Topology. Englewood Cliffs, New Jersey, 1974.

    MATH  Google Scholar 

  44. Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo Bremer, and Bernd Hamann. Topology-based simplification for feature extraction from 3d scalar fields. In Proceedings of IEEE Conference on Visualization, 2005.

    Google Scholar 

  45. T. Itoh and K. Koyamada. Automatic isosurface propagation using extrema graph and sorted boundary cell lists. IEEE Transactions on Visualization and Computer Graphics, 1:319-327, 1995.

    Article  Google Scholar 

  46. R. Jones. Connected filtering and segmentation using component trees. Computer Vision and Image Understanding, 75:215-228, 1999.

    Article  Google Scholar 

  47. C. Jun, D. Kim, D. Kim, H. Lee, J. Hwang, and T. Chang. Surface slicing algorithm based on topology transition. Computer-Aided Design, 33(11):825-838, 2001.

    Article  Google Scholar 

  48. D. B. Karron and J. Cox. Extracting 3D objects from volume data using digital morse theory. In CVRMed ’95: Proc. of the First Int. Conf. on Computer Vision, Virtual Reality and Robotics in Medicine, volume 905 of Lecture Notes in Computer Science, pages 481-486, London, UK, 1995. Springer-Verlag.

    Google Scholar 

  49. P. Magillo, E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. Extracting terrain morphology: A new algorithm and a comparative evaluation. In 2nd International Conference on Computer Graphics Theory and Applications, March 2007.

    Google Scholar 

  50. A. Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics, 5(4):308-321, 1999.

    Article  Google Scholar 

  51. M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1987.

    Google Scholar 

  52. W. S. Massey. A basic course in algebraic topology. Springer-Verlag, New York, NY, USA, 1991.

    MATH  Google Scholar 

  53. F. Meyer. Topographic distance and watershed lines. Signal Processing, 38:113-125, 1994.

    Article  MATH  Google Scholar 

  54. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.

    MATH  Google Scholar 

  55. Mesmoudi Mohammed Mostefa and De Floriani Leila. Morphology-based representations of discrete scalar fields. In In proceedings of the 2nd International Conference on Computer Graphics Theory. ISI Proceedings, March 2007.

    Google Scholar 

  56. L. R. Nackman. Two-dimensional critical point configuration graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(4):442-450, 1984.

    MATH  Google Scholar 

  57. V. J. Natarajan and N. Pascucci. Volumetric data analysis using Morse-Smale complexes. In Proceedings Shape Modeling International 2005, 2005.

    Google Scholar 

  58. X. Ni, M. Garland, and J. C. Hart. Fair morse functions for extracting the topo-logical structure of a surface mesh. ACM Transaction on Graphics, 23(3):613-622, 2004.

    Article  Google Scholar 

  59. L. Papaleo. Surface Reconstruction: online mosaicing and Modeling with uncertnaity. PhD thesis, Department of Computer Science - University of Genova, May 2004.

    Google Scholar 

  60. V. Pascucci. Topology diagrams of scalar fields in scientific visualization. In S. Rana, editor, Topological Data Structures for Surfaces, pages 121-129. John Wiley and Sons Ltd, 2004.

    Google Scholar 

  61. V. Pascucci. Generalization 3D Morse-Smale complexes. In Dagstuhl Seminar on Scientific Visualization, 2005 - to appear.

    Google Scholar 

  62. V. Pascucci and K. Cole-McLaughin. Efficient computation of the topology of the level sets. In Proceedings of Visualization 2002, pages 187-194. IEEE Press, 2002.

    Google Scholar 

  63. V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets. Algorithmica, 38:249-268, 2003.

    Article  MathSciNet  Google Scholar 

  64. Valerio Pascucci. On the topology of the level sets of a scalar field. In Proceedings of the 13th Canadian Conference on Computational Geometry, pages 141-144, University of Waterloo, Ontario, Canada, 2001.

    Google Scholar 

  65. T. K. Peucker and D. H. Douglas. Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data. Computer Graphics and Image Processing, 4:375-387, 1975.

    Article  Google Scholar 

  66. J. L. Pfaltz. Surface networks. Geographical Analysis, 8:77-93, 1976.

    Google Scholar 

  67. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical recipes in c – second edition. Cambridge University Press, 1992.

    Google Scholar 

  68. G. Reeb. Sur les points singuli èrs d’une forme de Pfaff compl ètement int égrable ou d’une fonction num èrique. Comptes Rendu de l’Academie des Sciences, 222:847-849, 1946.

    MATH  MathSciNet  Google Scholar 

  69. J. Roerdink and A. Meijster. The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae, 41:187-228, 2000.

    MATH  MathSciNet  Google Scholar 

  70. B. Schneider. Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis, 37:244-263, 2005.

    Article  Google Scholar 

  71. B. Schneider and J. Wood. Construction of metric surface networks from raster-based DEMs. In S. Rana, editor, Topological Data Structures for Surfaces, pages 53-70. John Wiley and Sons Ltd, 2004.

    Google Scholar 

  72. Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Surface coding based on Morse theory. Ieee Computer Graphics and Applications, 11:66-78, 1991.

    Article  Google Scholar 

  73. S. Smale. Morse inequalities for a dynamical system. Bulletin of American Mathematical Society, 66:43-49, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  74. B.-S. Sohn and C. L. Bajaj. Time-varying contour topology. IEEE Transactions on Visualization and Computer Graphics, 12(1):14-25, 2006.

    Article  Google Scholar 

  75. P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin and New York, 2004.

    Google Scholar 

  76. A. Szymczak. Subdomain aware contour trees and contour evolution in time-dependent scalar fields. In SMI ’05: Proceedings of Shape Modeling Applications 2005. IEEE Press, 2005.

    Google Scholar 

  77. S. Takahashi. Algorithms for Extracting Surface Topology from Digital Elevation Models, pages 31-51. John Wiley & Sons Ltd, 2004.

    Google Scholar 

  78. S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Computer Graphics Forum, 14:181-192, 1995.

    Article  Google Scholar 

  79. S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its application to transfer function design. Graphical Models, 66(1):24-49, 2004.

    Article  MATH  Google Scholar 

  80. S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D in O(nlogn) steps. In SCG ’98: Proceedings of the 14th Annual Symposium on Computational Geometry 1998, pages 68-75. ACM Press, 1998.

    Google Scholar 

  81. H. Theisel and C. Roessl. Morphological representations of vector fields. In Shape Analysis and Structuring. Springer, 2007.

    Google Scholar 

  82. J. Toriwaki and T. Fukumura. Extraction of structural information from gray pictures. Computer Graphics and Image Processing, 7:30-51, 1978.

    Article  Google Scholar 

  83. M. van Kreveld, R.van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface traversal. In SCG ’97: Proceedings of the 13th Annual Symposium on Computational Geometry 1997, pages 212-220. ACM Press, 1997.

    Google Scholar 

  84. L. Vincent and S. Beucher. Introduction to the morphological tools for segmentation. Traitement d’images en microscopie balayage et en microanalyse par sonde lectronique, pages F1-F43, March 1990.

    Google Scholar 

  85. L. Vincent and P. Soille. Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583-598, 1991.

    Article  Google Scholar 

  86. L. T. Watson, T. J. Laffey, and R. M. Haralick. Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation. Computer Vision, Graphics, and Image Processing, 29:143-167, 1985.

    Article  Google Scholar 

  87. G. H. Weber, G. Schueuermann, H. Hagen, and B. Hamann. Exploring scalar fields using critical isovalues. In Proceedings IEEE Visualization 2002, pages 171-178. IEEE Computer Society, 2002.

    Google Scholar 

  88. G. H. Weber, G. Schueuermann, and B. Hamann. Detecting critical regions in scalar fields. In G.-P. Bonneau, S. Hahmann, and C. D. Hansen, editors, Proceedings Data Visualization Symposium, pages 85-94. ACM Press, New York, 2003.

    Google Scholar 

  89. G. W. Wolf. Topographic surfaces and surface networks. In S. Rana, editor, Topological Data Structures for Surfaces, pages 15-29. John Wiley and Sons Ltd, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biasotti, S., De Floriani, L., Falcidieno, B., Papaleo, L. (2008). Morphological Representations of Scalar Fields. In: De Floriani, L., Spagnuolo, M. (eds) Shape Analysis and Structuring. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33265-7_6

Download citation

Publish with us

Policies and ethics