Shape Interrogation

  • Stefanie Hahmann
  • Alexander Belyaev
  • Laurent Busé
  • Gershon Elber
  • Bernard Mourrain
  • Christian Rössl
Part of the Mathematics and Visualization book series (MATHVISUAL)

Shape interrogation methods are of increasing interest in geometric modeling as well as in computer graphics. Originating 20 years ago from CAD/CAM applications where “class A” surfaces are required and no surface imperfections are allowed, shape interrogation has become recently an important tool for various other types of surface representations such as triangulated or polygonal surfaces, subdivision surface, and algebraic surfaces. In this paper we present the state-of-the-art of shape interrogation methods including methods for detecting surface imperfections, surface analysis tools and methods for visualizing intrinsic surface properties. Furthermore we focus on stable numerical and symbolic solving of algebraic systems of equations, a problem that arises in most shape interrogation methods.


Gaussian Curvature Principal Curvature Polynomial System Freeform Surface Geodesic Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Alliez, M. Attene, C. Gotsman, and G. Ucelli. Recent advances in remeshing of surfaces. In L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.Google Scholar
  2. 2.
    P. Alliez, D. Cohen-Steiner, O. Devillers, B. L évy, and M. Desbrun. Anisotropic polygonal remeshing. ACM Transactions on Graphics, 22(3):485-493, July 2003.Google Scholar
  3. 3.
    W. Auzinger and H. J. Stetter. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. In Proc. Intern. Conf. on Numerical Math., volume 86 of Int. Series of Numerical Math, pages 12-30. Birkh äuser Verlag, 1988.Google Scholar
  4. 4.
    R Barnhill, G Farin, L. Fayard, and H Hagen. Twists, curvature and surface interrogation. CAD, 20:314-346, 1988.Google Scholar
  5. 5.
    J. Beck, R. Farouki, and J. Hinds. Surface analysis methods. IEEE CG & Appl., 6:19-35, 1986.Google Scholar
  6. 6.
    K.-P. Beier. The porcupine technique: principles, applications, and algorithms. Technical report, University of Michigan, 1987.Google Scholar
  7. 7.
    K.-P. Beier and Y. Chen. Highlight-line algorithm for realtime surface quality assessment. CAD, 26(4):268-277, 1994.zbMATHGoogle Scholar
  8. 8.
    A. G. Belyaev, E. V. Anoshkina, and T. L. Kunii. Ridges, ravines, and singularities. In A. T. Fomenko, and T. L. Kunii, Topological Modeling for Visualization, pages 375-383. Springer, 1997. Chapter 18.Google Scholar
  9. 9.
    A. G. Belyaev and Y. Ohtake. An image processing approach to detection of ridges and ravines on polygonal surfaces. In Eurographics 2000, Short Presentations, pages 19-28, August 2000.Google Scholar
  10. 10.
    A. G. Belyaev, A. A. Pasko, and T. L. Kunii. Ridges and ravines on implicit surfaces. In Proc. Computer Graphics International 1998, pages 530-535, 1998.Google Scholar
  11. 11.
    M. V. Berry and J. H. Hannay. Umbilic points on gaussian random surfaces. J. Phys. A, 10:1809-21, 1977.Google Scholar
  12. 12.
    P. J. Besl and R. C. Jain. Invariant surface characteristics for 3D object recognition in range images. Comput. Vision Graph. Image Process, 33(1):33-80, 1986.Google Scholar
  13. 13.
    I. A. Bogaevski, V. Lang, A. G. Belyaev, and T. L. Kunii. Color ridges on implicit polynomial surfaces. In GraphiCon 2003 Proceedings, pages 161-164, September 2003.Google Scholar
  14. 14.
    V. Borrelli, F. Cazals, and J. M. Morvan. On the angular defect of triangulations and the pointwise approximation of curvatures. Computer Aided Geometric Design, 20(6):319-341,2003.zbMATHMathSciNetGoogle Scholar
  15. 15.
    J. W. Bruce, P. J. Giblin, and F. Tari. Ridges, crests and sub-parabolic lines of evolving surfaces. International Journal of Computer Vision, 18(3):195-210, 1996.Google Scholar
  16. 16.
    J. W. Bruce, P. J. Giblin, and F. Tari. Families of surfaces: focal sets, ridges and umbilics. Math. Proc. Camb. Phil. Soc., 125:243-268, 1999.zbMATHMathSciNetGoogle Scholar
  17. 17.
    J. W. Bruce and T. C. Wilkinson. Folding maps and focal sets. In M. Dæhlen, T. Lyche, and L. L. Schumaker, editors, Proceedings of Warwick Symposium on Singularities, Springer Lecture Notes in Math., vol 1462, pages 63-72, Berlin and New York,, 1991. Springer-Verlag.Google Scholar
  18. 18.
    L. Bus é. Residual resultant over the projective plane and the implicitization problem. In Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, pages 48-55 (electronic), New York, 2001. ACM.Google Scholar
  19. 19.
    L. Bus é, M. Elkadi, and B. Mourrain. Generalized resultants over unirational algebraic varieties. J. Symbolic Comput., 29(4-5):515-526, 2000. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998).MathSciNetGoogle Scholar
  20. 20.
    L. Bus é, M. Elkadi, and B. Mourrain. Resultant over the residual of a complete intersection. J. Pure Appl. Algebra, 164(1-2):35-57, 2001. Effective methods in algebraic geometry (Bath, 2000).MathSciNetGoogle Scholar
  21. 21.
    L. Bus é, M. Elkadi, and B. Mourrain. Using projection operators in computer aided geometric design. In Topics in algebraic geometry and geometric modeling, volume 334 of Contemp. Math., pages 321-342. Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  22. 22.
    J. Canny and P. Pedersen. An algorithm for the Newton resultant. Technical Report 1394, Comp. Science Dept., Cornell University, 1993.Google Scholar
  23. 23.
    C. Catalano and I. Ivrissimtzis. Subdivision surfaces and applications. In L. L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.Google Scholar
  24. 24.
    F. Cazals and M. Pouget. Estimating differential quantities using polynomial fitting of osculating jets. In Symposium on Geometry Processing, pages 177-187, 2003.Google Scholar
  25. 25.
    F. Cazals and M. Pouget. Ridges and umbilics of a sampled smooth surface: a complete picture gearing toward topological coherence. Rapport de Recherche RR-5294, INRIA, September 2004.Google Scholar
  26. 26.
    F. Cazals and M. Pouget. Smooth surfaces, umbilics, lines of curvatures, foliations, ridges and the medial axis: a concise overview. Rapport de Recherche RR-5138, INRIA, March 2004.Google Scholar
  27. 27.
    S. Chan and E. Purisima. A new tetrahedral tesselation scheme for isosurface generation. Computers & Graphics, 22(1):83-90, 1998.Google Scholar
  28. 28.
    E. Cohen, R. Riesenfeld, and G. Elber. Geometric Modeling with Splines: An Introduc- tion. AK Peters, 2001.Google Scholar
  29. 29.
    D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. ACM Transactions on Graphics, 23(3):905-914, August 2004. Proceedings of SIGGRAPH 2004.Google Scholar
  30. 30.
    D. Cohen-Steiner and J.-M. Morvan. Restricted delaunay triangulations and normal cycle. In Proceedings of the nineteenth Conference on Computational Geometry (SCG03), pages 312-321, June 8-10 2003.Google Scholar
  31. 31.
    R. M. Corless, P. M. Gianni, and B. M. Trager. A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In W.W. K üchlin, editor, Porc. ISSAC, pages 133-140, 1997.Google Scholar
  32. 32.
    P. Cs ák ány and A. M. Wallace. Computation of local differential parameters on irregular meshes. In R. Cipola and R. Martin, editors, The Mathematics of Surfaces IX, pages 19-33. Springer, 2000.Google Scholar
  33. 33.
    C. D’Andrea. Macaulay style formulas for sparse resultants. Trans. Amer. Math. Soc., 354(7):2595-2629 (electronic), 2002.zbMATHMathSciNetGoogle Scholar
  34. 34.
    C. D’Andrea and A. Dickenstein. Explicit formulas for the multivariate resultant. J. Pure Appl. Algebra, 164(1-2):59-86, 2001. Effective methods in algebraic geometry (Bath, 2000).zbMATHMathSciNetGoogle Scholar
  35. 35.
    G. Darboux. Leçons sur la th éorie g én érale des surfaces, Tome 4. Gauthier-Villars, Paris, 1896.Google Scholar
  36. 36.
    D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive contours for conveying shape. ACM Trans. on Graphics, 22(3):848-855, 2003. Proc. ACM SIGGRAPH 2003.Google Scholar
  37. 37.
    M. Desbrun, M. Meyer, P. Schr öder, and A. H. Barr. Implicit fairing of irregular meshes using diffusion and curvature flow. Computer Graphics (Proceedings of SIGGRAPH 99), pages 317-324, 1999.Google Scholar
  38. 38.
    J. Dill. An application of color graphics to the display of surface curvature. Computer Graphics, 15(3):153-161, 1981.Google Scholar
  39. 39.
    P. M. Do Carmo. Differential Geometry of curves and surfaces. Prentice-Hall, Engle-wood Cliffs, 1976.zbMATHGoogle Scholar
  40. 40.
    D. Eberly. Ridges in Image and Data Analysis. Kluwer, 1996.Google Scholar
  41. 41.
    A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion tree bounds for the descartes method. In ISSAC ’06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation, pages 71-78, New York, NY, USA, 2006. ACM Press.Google Scholar
  42. 42.
    L. P. Eisenhart. An introduction to differential geometry. Princeton University Press, Princeton, N.J., 1976.Google Scholar
  43. 43.
    G. Elber. Free form surface analysis using a hybrid of symbolic and numerical computation. PhD thesis, Department of Computer Science, The University of Utah, 1992.Google Scholar
  44. 44.
    G. Elber. Freeform surface region optimization for three- and five-axis milling. Computer Aided Design, 27(6):465-470, June 1995.zbMATHGoogle Scholar
  45. 45.
    G. Elber. Symbolic and numeric computation in curve interrogation. Computer Graphics forum, 14(1):25-34, March 1995.Google Scholar
  46. 46.
    G. Elber. Curve evaluation and interrogation on surfaces. The Journal of Graphical Models, 63(3):197-210, May 2001.zbMATHGoogle Scholar
  47. 47.
    G. Elber and E. Cohen. Second-order surface analysis using hybrid symbolic and numeric operators. ACM Trans. on Graphics, 12(2):160-178, 1993.zbMATHGoogle Scholar
  48. 48.
    G. Elber and M.-Soo Kim. Geometric shape recognition of freeform curves and surfaces. Graphics Models and Image Processing, 59(6):417-433, November 1997.Google Scholar
  49. 49.
    G. Elber and M.-Soo Kim. Geometric constraint solver using multivariate rational spline functions. In Proceedings of the sixth ACM Symposium on Solid Modelling and Applicat ions, pages 1-10. ACM Press, 2001.Google Scholar
  50. 50.
    I. Emiris and J. Canny. A practical method for the sparse resultant. In M. Bronstein, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages 183-192, Kiev, July 1993.Google Scholar
  51. 51.
    I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real algebraic numbers: Complexity analysis and experimentations. Research Report 5897, INRIA, Avril 2006.Google Scholar
  52. 52.
    I. Z. Emiris and V. Y. Pan. Symbolic and numeric methods for exploiting structure in constructing resultant matrices. J. Symbolic Comput., 33(4):393-413, 2002.zbMATHMathSciNetGoogle Scholar
  53. 53.
    G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, New York, 4th edition, 1996.Google Scholar
  54. 54.
    G. Farin and N. Sapidis. Curvature and the fairness of curves and surfaces. IEEE CG & Appl., 9:52-57, 1989.Google Scholar
  55. 55.
    R. Farouki and V. Rajan. On the numerical condition of polynomials in bernstein form. Computer Aided Geometric Design, 4(3):191-216, 1987.zbMATHMathSciNetGoogle Scholar
  56. 56.
    R. T. Farouki. Graphical methods for surface differential geometry. In R. Martin, editor, in Mathematics of surfaces, pages 363-385. IMA Series, 1987.Google Scholar
  57. 57.
    R. T. Farouki and T. N. T. Goodman. On the optimal stability of the bernstein basis. Mathematics of computation, 65(216):1553-1566, October 1996.zbMATHMathSciNetGoogle Scholar
  58. 58.
    J. D. Foley, A. van Damm, S. K. Feiner, and J. F. Hughes. Computer Graphics. Principles and Practice. Adison-Wesley, 1990. 2nd edition.Google Scholar
  59. 59.
    A. Forrest. On the rendering of surfaces. Computer Graphics, pages 253-259, 1979.Google Scholar
  60. 60.
    P. J. Frey and H. Boroucraki. Surface mesh quality evaluation. International Journal for Numerical Methods in Engineering, 45:101-118, 1999.zbMATHMathSciNetGoogle Scholar
  61. 61.
    I. Friedel, P. Schr öder, and A. Khodakovsky. Variational normal meshes. ACM Trans- actions on Graphics, 23(4):1061-1073, 2004.Google Scholar
  62. 62.
    I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Birkh äuser Boston Inc., Boston, MA, 1994.Google Scholar
  63. 63.
    A. S. Glassner. Computing surface normals for 3D models. In A. S. Glassner, editor, Graphics Gems, pages 562-566. Academic Press, 1990.Google Scholar
  64. 64.
    J. Goldfeather and V. Interrante. A novel cubic-order algorithm for approximating principal directions vectors. ACM Transactions on Graphics, 23(1):45-63, 2004.Google Scholar
  65. 65.
    G. G. Gordon. Face recognition from depth maps and surface curvature. In Geometric Methods in Computer Vision, Proc. SPIE 1570, pages 234-247, 1991.Google Scholar
  66. 66.
    H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions on Computers, C-20(6):623-629, 1971.zbMATHGoogle Scholar
  67. 67.
    U. Grenader and M. I. Miller. Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, 56(4):617-694, 1998.MathSciNetGoogle Scholar
  68. 68.
    A. Gu éziec, X. Pennec, and N. Ayache. Medical image registration using geometric hashing. IEEE Comput. Sci. Eng., 4(4):29-41, 1997.Google Scholar
  69. 69.
    A. Gullstrand. Zur Kenntnis der Kreispunkte. Acta Mathematica, 29:59-100, 1904.zbMATHMathSciNetGoogle Scholar
  70. 70.
    S. Gumhold, X. Wang, and R. McLeod. Feature extraction from point clouds. In Proc. 10th International Meshing Roundtable, pages 293-305, Sandia National Laboratories, Newport Beach, CA, 2001.Google Scholar
  71. 71.
    H. Hagen and S. Hahmann. Generalized focal surfaces : A new method for surface interrogation. In Proceedings Visualization’92, pages 70-76. IEEE, 1992.Google Scholar
  72. 72.
    P. L. Hallinan, G. G. Gordon, A. L. Yuille, P. Giblin, and D. Mumford. Two- and TreeDimensional Patterns of the Face. A K Peters, 1999.Google Scholar
  73. 73.
    B. Hamann. Curvature approximation for triangulated surfaces. Computing Suppl., 8:139-153, 1993.MathSciNetGoogle Scholar
  74. 74.
    J. Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1992. A first course.Google Scholar
  75. 75.
    E. Hartmann. On the curvature of curves and surfaces defined by normalforms. Computer Aided Geometric Design, 16(5):355-376, 1999.zbMATHMathSciNetGoogle Scholar
  76. 76.
    R. Hartwig and H. Nowacki. Isolinien und schnitte in coonschen fl ächen. Geometrisches Modellieren 65, Informatik Fachberichte der GI, 1982.Google Scholar
  77. 77.
    R. A. Herman. A Treatise on Geometrical Optics. Cambridge University Press, 1900.Google Scholar
  78. 78.
    M. Higashi, T. Saitoh, and Y. Watanabe. Analysis of aesthetic free-form surfaces by surface edges. In Pacific Graphics ’95, pages 294-305, 1995.Google Scholar
  79. 79.
    D. Hilbert and S. Cohn-Vossen. Geometry and the imagination. Chelsea Publishing Company, New York, 1952.zbMATHGoogle Scholar
  80. 80.
    K. Hildebrandt and K. Polthier. Anisotropic filtering of non-linear surface features. In Proc. Eurographics, pages 391-400, 2004.Google Scholar
  81. 81.
    K. Hildebrandt, K. Polthier, and M. Wardetzky. Smooth feature lines on surface meshes. In Third Eurographics Symposium on Geometry Processing, pages 85-90, July 2005.Google Scholar
  82. 82.
    M. Hisada, A. G. Belyaev, and T. L. Kunii. A skeleton-based approach for detection of perceptually salient features on polygonal surfaces. Computer Graphics Forum, 21 (4):689-700, 2002.Google Scholar
  83. 83.
    D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18:65-96, 1985.Google Scholar
  84. 84.
    M. Hosaka. Modeling of Curves and Surfaces in CAD/CAM. Springer, Berlin, 1992.Google Scholar
  85. 85.
    J. Hoschek. Detecting regions with undesirable curvature. CAGD, 1:183-192, 1984.zbMATHGoogle Scholar
  86. 86.
    J. Hoschek. Smoothing of curves and surfaces. CAGD, 2:97-105, 1985.zbMATHMathSciNetGoogle Scholar
  87. 87.
    J. Hoschek, U. Dietz, and W. Wilke. A geometric concept of reverse engineering of shape: Approximation and feature lines. In M. Dæhlen, T. Lyche, and L. L. Schumaker, editors, Mathematical Methods for Curves and Surfaces II, pages 253-262. Vanderbilt Univ. Press, 1998.Google Scholar
  88. 88.
    A. Hubeli and M. Gross. Multiresolution feature extraction from unstructured meshes. In Proc. IEEE Visualization 2001, pages 287-294, 2001.Google Scholar
  89. 89.
    V. Interrante, H. Fuchs, and S. Pizer. Enhancing transparent skin surfaces with ridge and valley lines. In Proc. IEEE Visualization 1995, pages 52-59, 1995.Google Scholar
  90. 90.
    J. P. Jouanolou. Formes d’inertie et r ésultant: un formulaire. Adv. Math., 126(2):119-250,1997.zbMATHMathSciNetGoogle Scholar
  91. 91.
    S. Kapoor. Efficient computation of geodesic shortest paths. In STOC ’99: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 770-779, New York, NY, USA, 1999. ACM Press.Google Scholar
  92. 92.
    M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky. Chow polytopes and general resultants. Duke Math. J., 67(1):189-218, 1992.zbMATHMathSciNetGoogle Scholar
  93. 93.
    S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph., 22(3):954-961, 2003.Google Scholar
  94. 94.
    E. Kaufmann and R. Klass. Smoothing surfaces using reflection lines for families of splines. CAD, 20:312-316, 1988.zbMATHGoogle Scholar
  95. 95.
    J. T. Kent, D. Lee, Mardia K. V., and A. D. Linney. Using curvature information in shape analysis. In K. V. Mardia, G. A. Gill, and I. L. Dryden, editors, Proc. Image Fusion and Shape Variability Techniques, pages 88-99. Leeds University Press, 1996.Google Scholar
  96. 96.
    J. T. Kent, K. V. Mardia, and J. West. Ridge curves and shape analysis. In The British Machine Vision Conference 1996, pages 43-52, 1996.Google Scholar
  97. 97.
    J. Kjellander. Smoothing of bicubic parametric surfaces. CAD, 15:288-293, 1983.Google Scholar
  98. 98.
    R. Klass. Correction of local irregularities using reflection lines. CAD, 12:73-77, 1980.Google Scholar
  99. 99.
    K. H. Ko, T. Maekawa, N. M. Patrikalakis, H. Masuda, and F.-E. Wolter. Shape intrinsic fingerprints for free-form object matching. In Proc. of 8th ACM Symposium on Solid Modeling and Applications, pages 196 - 207, 2003.Google Scholar
  100. 100.
    L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution modeling on arbitrary meshes. In Proceedings of SIGGRAPH 98, pages 105-114, 1998.Google Scholar
  101. 101.
    J. J. Koenderink. Solid Shape. MIT Press, 1990.Google Scholar
  102. 102.
    I. Kreyszig. Differential Geometry. Univ. of Toronto Press, Toronto, 1959.zbMATHGoogle Scholar
  103. 103.
    V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes. In SIGGRAPH 96 Conference Proceedings, pages 313-324, New York, NY, USA, 1996. ACM Press.Google Scholar
  104. 104.
    P. Krsek, G. Lukacs, and R. R. Martin. Algorithms for computing curvatures from range data. In R. Cripps, editor, The Mathematics of Surfaces VIII, pages 1-16. IMA, 1998.Google Scholar
  105. 105.
    J. Lane and R. Riesenfeld. Bounds on a polynomial. BIT, 21:112-117, 1981.zbMATHMathSciNetGoogle Scholar
  106. 106.
    T. Langer, A. Belyaev, and H.-P. Seidel. Asymptotic analysis of discrete normals and curvatures of polylines. In SCCG ’05: Proceedings of the 21st spring conference on Computer graphics, pages 229-232, 2005.Google Scholar
  107. 107.
    T. Langer, A. Belyaev, and H.-P. Seidel. Exact and approximate quadratures for curvature tensor estimation. In Vision, Modeling, and Visualization 2005 (VMV’05), pages 421-428, 2005.Google Scholar
  108. 108.
    R. B. Lee and D. A. Fredericks. Intersection of parametric surfaces and a plane. IEEE CG & Appl., 4(8):48-51, 1984.Google Scholar
  109. 109.
    J. J. Little and P. Shi. Structural lines, TINs and DEMs. Algorithmica, 30(2):243-263, 2001.zbMATHMathSciNetGoogle Scholar
  110. 110.
    A. M. L ópez, F. F. Lumbreras, and J. Serrat. Creaseness from level set extrinsic curvature. In Proc. ECCV’98, pages 156-169. Springer, 1998.Google Scholar
  111. 111.
    W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH 87 Conference Proceedings, pages 163-169, New York, NY, USA, 1987. ACM Press.Google Scholar
  112. 112.
    C. Lu, Y. Cao, and D. Mumford. Surface evolution under curvature flows. Journal of Visual Communication and Image Representation, 13(1/2):65-81, March/June 2002.Google Scholar
  113. 113.
    G. Luk ács and L. Andor. Computing natural division lines on free-form surfaces based on measured data. In M. Dæhlen, T. Lyche, and L. L. Schumaker, editors, Mathematical Methods for Curves and Surfaces II, pages 319-326. Vanderbilt Univ. Press, 1998.Google Scholar
  114. 114.
    K.-L. Ma and V. Interrante. Extracting feature lines from 3D unstructured grids. In Proc. IEEE Visualization 1997, pages 285-292, 1997.Google Scholar
  115. 115.
    F. S. Macaulay. Some formulae in elimination. Proc. London Math. Soc., 1(33):3-27, 1902.Google Scholar
  116. 116.
    T. Maekawa and Patrikalakis M. Interrogation of differential geometry properties for design and manufacture. Visual Computer, 10:216-237, 1994.Google Scholar
  117. 117.
    T. Maekawa, F.-E. Wolter, and N. Patrikalakis. Umbilics and lines of curvature for shape interrogation. CAGD, 13:133-161, 1996.zbMATHMathSciNetGoogle Scholar
  118. 118.
    T. Maekawa, F.-E. Wolter, and N. M. Patrikalakis. Umbilics and lines of curvature for shape interrogation. Computer Aided Geometric Design, 13(2):133-161, 1996.zbMATHMathSciNetGoogle Scholar
  119. 119.
    J.-L. Maltret and M. Daniel. Discrete curvatures and applications: a survey. Rapport de recherche 004.2002, Laboratoire des Sciences de l’Information et des Syst èmes, 2002.Google Scholar
  120. 120.
    N. Max. Weights for computing vertex normals from facet normals. Journal of Graphics Tools, 4(2):1-6, 1999.Google Scholar
  121. 121.
    D. S. Meek and D. J. Walton. On surface normal and gaussian curvature approximations given data sampled from a smooth surface. Computer Aided Geometric Design, 17:521-543,2000.zbMATHMathSciNetGoogle Scholar
  122. 122.
    M. Meyer, M. Desbrun, P. Schr öder, and A. H. Barr. Discrete differential-geometry operators for triangulated 2-manifolds. In International Workshop on Visualization and Mathematics, Berlin-Dahlem, Germany, May 2002.Google Scholar
  123. 123.
    J. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, volume 334, pages 633-702. Elsevier Science, 2000.Google Scholar
  124. 124.
    J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitrou. The discrete geodesic problem. SIAM J. of Computing, 16(4):647-668, 1987.zbMATHGoogle Scholar
  125. 125.
    N. J. Mitra and A. Nguyen. Estimating surface normals in noisy point cloud data. In Symposium on Computational geometry, pages 322-328. ACM Press, 2003.Google Scholar
  126. 126.
    N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals in noisy point cloud data. International Journal of Computational Geometry and Applications, 2004.Google Scholar
  127. 127.
    O. Monga, N. Armande, and P. Montesinos. Thin nets and crest lines: Application to satellite data and medical images. Computer Vision and Image Understanding: CVIU, 67 (3):285-295, 1997.Google Scholar
  128. 128.
    O. Monga and S. Benayoun. Using partial derivatives of 3D images to extract typical surface features. Computer Vision and Image Understanding: CVIU, 61:171-195, 1995.Google Scholar
  129. 129.
    O. Monga, S. Benayoun, and O.D. Faugeras. From partial derivatives of 3-D density images to ridge lines. In Proc. CVPR’92, pages 354-359. IEEE, 1992.Google Scholar
  130. 130.
    H. P. Moreton and C. H. Sequin. Functional optimization for fair surface design. In SIGGRAPH’92 Proceedings, pages 167-176, August 1992.Google Scholar
  131. 131.
    R. Morris. The sub-parabolic lines of a surface. In G. Mullineux, editor, Mathematics of Surfaces VI, IMA new series 58, pages 253-262. Clarendon Press, 1996.Google Scholar
  132. 132.
    J. M. Morvan and B. Thibert. On the approximation of a smooth surface with a tri-angulated mesh. Computational Geometry: Theory and Applications, 33(3):337-352, 2002.MathSciNetGoogle Scholar
  133. 133.
    B. Mourrain. Computing isolated polynomial roots by matrix methods. J. of Symbolic Computation, Special Issue on Symbolic-Numeric Algebra for Polynomials, 26(6):715-738, Dec. 1998.zbMATHMathSciNetGoogle Scholar
  134. 134.
    B. Mourrain. A new criterion for normal form algorithms. In M. Fossorier, H. Imai, Shu Lin, and A. Poli, editors, Proc. AAECC, volume 1719 of LNCS, pages 430-443. Springer, Berlin, 1999.Google Scholar
  135. 135.
    B. Mourrain and V. Y. Pan. Asymptotic acceleration of solving multivariate polynomial systems of equations. In STOC ’98 (Dallas, TX), pages 488-496. ACM, New York, 1999.Google Scholar
  136. 136.
    B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial equations.Technical Report 5658, INRIA Sophia-Antipolis, 2005.Google Scholar
  137. 137.
    B. Mourrain, F. Rouillier, and M.-F. Roy. Bernstein’s basis and real root isolation, pages 459-478. Mathematical Sciences Research Institute Publications. Cambridge University Press, 2005.Google Scholar
  138. 138.
    B. Mourrain and P. Tr ébuchet. Solving projective complete intersection faster. In C. Tra-verso, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages 231-238. New-York, ACM Press., 2000.Google Scholar
  139. 139.
    B. Mourrain and Ph. Tr ébuchet. Generalised normal forms and polynomial system solving. In M. Kauers, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages 253-260. New-York, ACM Press., 2005.Google Scholar
  140. 140.
    B. Mourrain, M. Vrahatis, and J. C. Yakoubsohn. On the complexity of isolating real roots and computing with certainty the topological degree. J. of Complexity, 18(2):612-640,2002.zbMATHMathSciNetGoogle Scholar
  141. 141.
    L. R. Nackman. Two-dimensional critical point configuration grpahs. IEEE Trans. Pattren Analysis and machine Intelligence, 6(4):442-450, 1984.zbMATHGoogle Scholar
  142. 142.
    M. Nielsen, O. F. Olsen, M. Sig, and M. Sigurd. Koenderink corner points. In Proceedings of the 4th International Workshop on Visual Form, pages 420-430. Springer-Verlag, 2001.Google Scholar
  143. 143.
    G. M. Nielson and B. Hamann. The asymptotic decider: resolving the ambiguity in marching cubes. In VIS ’91: Proceedings of the 2nd conference on Visualization ’91, pages 83-91, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.Google Scholar
  144. 144.
    T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed rational surface patches. Computer Graphics, 24(4 (Proc. ACM Siggraph 90)):337-345, August 1990.Google Scholar
  145. 145.
    Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley lines on meshes via implicit surface fitting. ACM Transactions on Graphics, 23(3):609-612, August 2004. Proc. ACM SIGGRAPH 2004.Google Scholar
  146. 146.
    D. L. Page, A. Koschan, and M. Abidi. Perception-based 3D triangle mesh segmentation using fast marching watersheds. In Proc. Intl. Conf. on Computer Vision and Pattern Recognition, Vol. II, pages 27-32, 2003.Google Scholar
  147. 147.
    D. L. Page, A. Koschan, Y. Sun, J. Paik, and A. Abidi. Robust crease detection and curvature estimation of piecewise smooth surfaces from triangle mesh approximations using normal voting. In Proceedings on Computer Vision and Pattern Recongition, 2001.Google Scholar
  148. 148.
    D. L. Page, Y. Sun, A. Koschan, J. Paik, and M. Abidi. Normal vector voting: Crease detection and curvature estimation on large, noisy meshes. Journal of Graphical Models, 64:1-31, 2002.Google Scholar
  149. 149.
    N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided Design and Manufacturing. Springer-Verlag, Berlin and Heidelberg, 2002.zbMATHGoogle Scholar
  150. 150.
    M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on point-sampled models. Computer Graphics Forum, 22(3):281-289, 2003. Eurographics 2003 issue. Google Scholar
  151. 151.
    X. Pennec, N. Ayache, and J. P. Thirion. Landmark-based registration using features identified through differential geometry. In I. N. Bankman, editor, Handbook of Medical Imaging, pages 499-513. Academic Press, 2000.Google Scholar
  152. 152.
    C. Petersen. Adaptive contouring of three-dimensional surfaces. CAGD, 1:61-74, 1984.zbMATHGoogle Scholar
  153. 153.
    S. Petitjean. A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys, 34(2), 2001.Google Scholar
  154. 154.
    G. Peyr é and L. Cohen. Heuristically driven front propagation for geodesic paths extraction. In Proceedings of VLSM’05, pages 173-184. Springer LNCS, 2005.Google Scholar
  155. 155.
    V. Pham-Tron, N. Szafran, and L. Biard. Pseudo-geodesics on three-dimensional surfaces and pseudo-geodesic meshes. Numerical Algorithms, 26:305-315, 2001.MathSciNetGoogle Scholar
  156. 156.
    B. T. Phong. Illumination for computer generated pictures. Communications of ACM, 18(6):311-317, 1975.Google Scholar
  157. 157.
    T. Poeschl. Detecting surface irregularities using isophotes. CAGD, 1:163-168, 1984.zbMATHGoogle Scholar
  158. 158.
    I. R. Porteous. Ridges and umbilics of surfaces. In R. R. Martin, editor, The Mathematics of Surfaces II, pages 447-458, Oxford, 1987. Clarendon Press.Google Scholar
  159. 159.
    I. R. Porteous. Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge University Press, Cambridge, 1994.zbMATHGoogle Scholar
  160. 160.
    I. R. Porteous and M. J. Puddephat. Landmarks of a surface. In R. Cipolla and R. R. Martin, editors, Mathematics of Surfaces IX, IMA new series, pages 114-125. Clarendon Press, 2000.Google Scholar
  161. 161.
    H. Pottmann. Visualizing curvature discontinuities of free-form surfaces. In Proc. Eurographics’89, pages 529-536, 1989.Google Scholar
  162. 162.
    E. Praun, H. Hoppe, and A. Finkelstein. Robust mesh watermarking. In SIGGRAPH 99 Conference Proceedings, pages 49-56, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.Google Scholar
  163. 163.
    J. G. Ramsay. Folding and Fracturing of Rocks. McGraw Hill, 1967.Google Scholar
  164. 164.
    J. J. Risler. M éthodes math ématiques pour la CAO. Masson, 1991.Google Scholar
  165. 165.
    A. Rockwood. Accurate display of tensor product isosurfaces. In IEEE Visualization ’90 Conf., 1990.Google Scholar
  166. 166.
    C. R össl, L. Kobbelt, and H.-P. Seidel. Extraction of feature lines on triangulated surfaces using morphological operators. In Proceedings of the 2000 AAAI Symposium, pages 71-75. AAAI Press, 2000.Google Scholar
  167. 167.
    S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In Proc. of Second International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), Thessaloniki, Greece, 2004.Google Scholar
  168. 168.
    M. A. Sabin. Contouring - the state of the art. In Earnshaw R.A., editor, Fundamental Algorithms for Computer Graphics, pages 411-482. Springer Verlag, 1985.Google Scholar
  169. 169.
    S. G. Scatterfield and D. F. Rogers. Contour lines from a b-spline surface. IEEE CG & Appl., 5(4), 1985.Google Scholar
  170. 170.
    D. Schweitzer. Artificial texturing: an aid to surface visualization. Computer Graphics, 17(3):23-29, 1983.Google Scholar
  171. 171.
    T. W. Sederberg and R. J. Meyers. Loop detection in surface patch intersections. Computer Aided Geometric Design, 5(2):161-171, 1988.zbMATHMathSciNetGoogle Scholar
  172. 172.
    T. W. Sederberg and J. Zheng. Algebraic methods for computer aided geometric design. In Handbook of computer aided geometric design, pages 363-387. North-Holland, Amsterdam, 2002.Google Scholar
  173. 173.
    E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of nonlinear polynomial systems. Comput. Aided Geom. Design, 10(5):379-405, 1993.zbMATHMathSciNetGoogle Scholar
  174. 174.
    K. Sloan. Surface normal (summary). In Usenet article, September 1991.Google Scholar
  175. 175.
    P.-P. J. Sloan, C. F. Rose, and M. F. Cohen. Shape by example. In SI3D ’01: Proceedings of the 2001 symposium on Interactive 3D graphics, pages 135-143, New York, NY, USA, 2001. ACM Press.Google Scholar
  176. 176.
    D. J. Struik. Lectures on Classical Differential Geometry. Dover Science, 1986.Google Scholar
  177. 177.
    G. Stylianou and G. Farin. Crest lines extraction from 3D triangulated meshes. In G. Farin, B. Hamann, and H. Hagen, editors, Hierarchical and Geometrical Methods in Scientific Visualization, pages 269-281. Springer, 2003.Google Scholar
  178. 178.
    Y. Sun, D. L. Page, J. K. Paik, A. Koschan, and M. A. Abidi. Triangle mesh-based edgedetection and its application to surface segmentation and adaptive surface smoothing. In Proc. Int. Conf. Image Processing, Vol. 3, pages 825-828, 2002.Google Scholar
  179. 179.
    V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe. Fast exact and approximate geodesics on meshes. ACM Trans. Graph., 24(3):553-560, 2005. Proceedings of SIGGRAPH’05.Google Scholar
  180. 180.
    G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proc. ICCV’95, pages 902-907, 1995.Google Scholar
  181. 181.
    H. Theisel, C. R össl, R. Zayer, and H.-P. Seidel. Normal based estimation of the curvature tensor for triangular meshes. In Proc. Pacific Graphics, pages 288-297, Seoul, South Korea, 2004.Google Scholar
  182. 182.
    J.-P. Thirion. The extremal mesh and the understanding of 3D surfaces. International Journal of Computer Vision, 19(2):115-128, 1996.Google Scholar
  183. 183.
    J.-P. Thirion. New feature points based on geometric invariants for 3D image registration. International Journal of Computer Vision, 18(2):121-137, May 1996.Google Scholar
  184. 184.
    J.-P. Thirion and A. Gourdon. The 3D marching lines algorithm and its application to crest lines extraction. Graphical Models and Image Processing, 58(6):503-509, 1996.Google Scholar
  185. 185.
    G. Th ürmer and C. A. W üthrich. Computing vertex normals from polygonal facets. Journal of Graphics Tools, 3(1):42-46, 1998.Google Scholar
  186. 186.
    P. Tr ébuchet. Vers une r ésolution stable et rapide des équations alg ébriques. PhD thesis, Universit é Pierre et Marie Curie, 2002.Google Scholar
  187. 187.
    B. L. van der Waerden. Modern Algebra. F. Ungar Publishing Co., New York, 3rd edition, 1950.Google Scholar
  188. 188.
    K. Watanabe and A. G. Belyaev. Detection of salient curvature features on polygonal surfaces. Computer Graphics Forum, 20(3):385-392, 2001. Eurographics 2001.Google Scholar
  189. 189.
    W. Welch and A. Witkin. Free-Form shape design using triangulated surfaces. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94, pages 247-256, 1994.Google Scholar
  190. 190.
    F.-E. Wolter. Cut locus and medial axis in global shape interrogation and representation. Technical Report memorandum 92-2, MIT, Department of Ocean Engineering, January 1992.Google Scholar
  191. 191.
    A. L. Yuille. Zero crossings on lines of curvature. Graphical Models and Image Processing, 45(1):68-87, 1989.Google Scholar
  192. 192.
    A. L. Yuille and M. Leyton. 3D symmetry-curvature duality theorems. Graphical Models and Image Processing, 52(1):124-140, 1990.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stefanie Hahmann
    • 1
  • Alexander Belyaev
    • 2
  • Laurent Busé
    • 3
  • Gershon Elber
    • 4
  • Bernard Mourrain
    • 3
  • Christian Rössl
    • 3
  1. 1.Laboratoire Jean KuntzmannInstitut National Polytechnique de GrenobleFrance
  2. 2.MPII, Max Planck Institut für InformatikSaarbrückenGermany
  3. 3.INRIA Sophia-AntipolisGermany
  4. 4.Technion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations