Skip to main content

Center Stage: The Crucial Role of Macrophytes in Regulating Trophic Interactions in Shallow Lake Wetlands

  • Chapter
Wetlands: Functioning, Biodiversity Conservation, and Restoration

Part of the book series: Ecological Studies ((ECOLSTUD,volume 191))

Abstract

Hydrophilic, or water-loving, macrophytes characterize wetland ecosystems, indicating prerequisite conditions of hydric soils and sufficient hydrology. The presence of such macrophytes is a key descriptor in multiple wetland def- initions (Lewis 2001a) and macrophytes may be further used to actually describe particular types of wetlands, such as cattail marshes. Macrophytes contribute significant biomass to wetland systems and represent a critical component of wetland biogeochemistry as primary producers and drivers of organic matter cycling within aquatic systems. In this chapter, we argue that macrophytes occupy the center of trophic interactions in shallow lakes, influ- encing outcomes through structural, behavioral and chemical interactions. We define shallow lakes as permanently flooded wetlands that often contain submerged or floating macrophytes and that may be surrounded by emergent vegetation (i.e.marshy habitat). Shallow remains a relative term in limnology circles, but typically is less than 3 m average depth, such that macrophytes can fill a substantial portion of the water column and stratification is neither pre- dictable nor long-term. Such systems may be termed lakes, ponds or wetlands, depending on their size and the ecological context. Macrophytes may regulate trophic interactions in ephemeral systems without permanent inundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams MV, Kattenfeld MG (1997) The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behav Ecol Sociobiol 40:169–174

    Google Scholar 

  • Agostinho AA, Gomes LC, Ferreira HJ Jr (2003) Relacoes entre macrófitas acquáticas e fauna de peixes. In: Thomas SM, Bini LM (eds) Ecologia e majejo de macrófitas aquáticas. EDUEM, pp 261–279

    Google Scholar 

  • Bachmann RW, Horsburgh CA, Hoyer MV, Mataraza LK, Canfield DE Jr (2002) Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470:219–234

    Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    PubMed  CAS  Google Scholar 

  • Balci P, Kennedy JH (2003) Comparison of chironomids and other macroinvertebrates associated with Myriophyllum spicatum and Heteranthera dubia. J Freshwater Ecol 18:235–247

    Google Scholar 

  • Bayley SE, Prather CM (2003) Do wetlands exhibit alternate stable states? Submersed aquatic vegetation and chlorophyll in western boreal shallow lakes. Limnol Oceanogr 48:2335–2345

    CAS  Google Scholar 

  • Blanco R, Romo S, Villena MJ, Martinez S (2003) Fish communities and food web interaction in some shallow Mediterranean lakes. Hydrobiologia 506/509:473–480

    Google Scholar 

  • Blindow I, Andersson G, Hageby A, Johansson S (1993) Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biol 30:159–167

    Google Scholar 

  • Blindow I, Hargeby A, Wagner BMA, Andersson G (2000) How important in the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biol 44:185–197

    Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size and composition of plankton. Science 150:28–35

    PubMed  CAS  Google Scholar 

  • Brönmark C (1985) Interactions between epiphytes, macrophytes and herbivores: an experimental approach. Oikos 45:26–30

    Google Scholar 

  • Brönmark C, Vermaat J (1997) Complex fish-snail-epiphyton interactions and their effects on submerged freshwater macrophytes. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes (Ecological Studies 131) Springer, Berlin Heidelberg New York, pp 47–68

    Google Scholar 

  • Bry C (1996) Role of vegetation in the life cycle of pike. In: Craig JF (ed) Pike: biology and exploitation. Chapman and Hall, London, pp 45–67

    Google Scholar 

  • Burks RL, Lodge DM (2002) Cued in: advances and opportunities in freshwater chemical ecology. J Chem Ecol 28:1901–1917

    PubMed  CAS  Google Scholar 

  • Burks RL, Jeppesen E, Lodge DM (2000) Chemicals from macrophytes and fishes suppress Daphnia growth and alter life history traits. Oikos 88:139–147

    CAS  Google Scholar 

  • Burks RL, Jeppesen E, Lodge DM (2001a) Littoral zone structures as Daphnia refugia against fish predators. Limnol Oceanogr 46:230–237

    Google Scholar 

  • Burks RL, Jeppesen E, Lodge DM (2001b) Pelagic prey and benthic predators: impact of odonate predation on Daphnia. J N Am Benthol Soc 20:615–628

    Google Scholar 

  • Burks RL, Lodge DM, Jeppesen E, Lauridsen TL (2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol 47:343–365

    Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Google Scholar 

  • Cattaneo A, Galanti G, Gentinetta S, Romo S (1998) Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biol 39:725–740

    Google Scholar 

  • Cheruvelil KS, Soranno PA, Madsen JD (2001) Epiphytic macroinvertebrates along a gradient of Eurasian watermilfoil cover. J Aquat Plant Manage 39:67–72

    Google Scholar 

  • Choi C, Bareiss C, Walenciak O, Gross EM (2002) Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. J Chem Ecol 28:2245–2256

    PubMed  CAS  Google Scholar 

  • Cottenie K, Nuytten J, Michels E, De Meester L (2001) Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442:339–350

    Google Scholar 

  • Declerck S, Vandekerkhove J, Johansson L, Muylaert K, Conde-Porcuna JM, Van der Gucht K, Pérez-MartÍnez C, Lauridsen T, Schwenk K, Zwart G, Rommens W, López-Ramos J, Jeppesen E, Vyverman W, Brendonck L, De Meester L (2005) Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86:1905–1915

    Google Scholar 

  • Dorn NJ, Wojdak JM (2004) The role of omnivorous crayfish in littoral communities. Oecologia 140:150–159

    PubMed  Google Scholar 

  • Elger A, Willby NJ (2003) Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Funct Ecol 17:58–65

    Google Scholar 

  • Elger A, Barrat-Segretain MH, Amoros C (2002) Plant palatability and disturbance level in aquatic habitats: an experimental approach using the snail Lymnaea stagnalis (L.). Freshwater Biol 47:931–940

    Google Scholar 

  • Englund G, Harms S (2003) Effects of light and microcrustacean prey on growth and investment in Utricularia vulgaris. Freshwater Biol 48:786–794

    Google Scholar 

  • Erhard D, Gross EM (2005) Do environmental factors influence the composition of potential allelochemicals in the freshwater submersed macrophyte Elodea nuttallii (Hydrocharitaceae)? Verh Int Ver Limnol 29:287–291

    Google Scholar 

  • Forbes SA (1925) The lake as a microcosm (reprint). INHS Bull 15:537–550

    Google Scholar 

  • Gaiser EE, Lang KL (1998) Distribution of cladoceran zooplankton among prairie pothole wetlands in northwest Iowa. Lake Reserv Manage 14:37–51

    Google Scholar 

  • Gopal B, Goel U (1993) Competition and allelopathy in aquatic plant communities. Bot Rev 59:155–210

    Google Scholar 

  • Gross EM (2003a) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Google Scholar 

  • Gross EM (2003b) Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos 103:497–504

    CAS  Google Scholar 

  • Gross EM, Meyer H, Schilling G (1996) Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41:133–138

    CAS  Google Scholar 

  • Gross EM, Johnson RL, Hairston NG (2001) Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127:105–114

    Google Scholar 

  • Gross EM, Feldbaum C, Graf A (2003a) Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506/509:559–565

    Google Scholar 

  • Gross EM, Erhard D, Ivanyi E (2003b) Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia 506/509:583–589

    Google Scholar 

  • Guisande C (2000) Effects of zooplankton and conductivity on tropical Utricularia foliosa investment in carnivory. Aquat Ecol 34:137–142

    Google Scholar 

  • Hann BJ, Zrum L (1997) Littoral microcrustaceans (Cladocera, Copepoda) in a prairie coastal wetland: seasonal abundance and community structure. Hydrobiologia 357:37–52

    CAS  Google Scholar 

  • Hessen DO, Skurdal J, Braathen JE (2004) Plant exclusion of a herbivore; crayfish population decline caused by an invading waterweed. Biol Invasions 6:133–140

    Google Scholar 

  • Jacobsen L, Perrow MR (1998) Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds. Ecol Freshwater Fish 7:78–86

    Google Scholar 

  • Jacobsen L, Berg S, Jepsen N, Skov C (2004) Does roach behaviour differ between shallow lakes of different environmental state? J Fish Biol 65:135–147

    Google Scholar 

  • James MR, Hawes I, Weatherhead M (2000) Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshwater Biol 44:311–326

    Google Scholar 

  • Jeppesen E (1998) The ecology of shallow lakes — biological interactions in the pelagial. DSc dissertation (NERI Report 24), Ministry of Environment and Energy, National Environmental Research Institute

    Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) (1997a) The structuring role of submerged macrophytes in lakes. (Ecological Studies 131) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR (1997b) Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes (Ecolological Studies 131) Springer, Berlin Heidelberg New York, pp 91–114

    Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T (1999) Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408/409:217–231

    CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K, Theil-Nielsen J, Jurgens K (2002) Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Arch Hydrobiol 153:533–555

    Google Scholar 

  • Jeppesen E, Jensen JP, Jensen C, Faafeng B, Hessen DO, Søndergaard M, Lauridsen T, Brettum P, Christoffersen K (2003) The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6:313–325

    CAS  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Fenger-Grøn M, Bramm ME, Sandby K, Møller PH, Rasmussen HU (2004) Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshwater Biol 49:432–447

    Google Scholar 

  • Jeppesen E, Søndergaard M, Mazzeo N, Meerhoff M, Branco CC, Huszar V, Scasso F (2005) Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In: Reddy V (ed) Tropical eutrophic lakes: their restoration and management. pp 331–359

    Google Scholar 

  • Jeppesen E, Pekcan-Hekim Z, Lauridsen TL, Søndergaard M, Jensen JP (2006) Habitat distribution of fish in late summer: changes along a nutrient gradient in Danish lakes. Ecol Freshwater Fish (in press)

    Google Scholar 

  • Jones JI, Sayer CD (2003) Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84:2155–2167

    Google Scholar 

  • Jones JI, Waldron S (2003) Combined stable isotope and gut contents analysis of food webs in plant dominated, shallow lakes. Freshwater Biol 48:1396–1407

    Google Scholar 

  • Jones JI, Moss B, Young JO (1997) Interactions between periphyton, nonmolluscan invertebrates and fish in standing freshwaters. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes (Ecological Studies 131) Springer, Berlin Heidelberg New York, pp 69–90

    Google Scholar 

  • Jones JI, Moss B, Eaton JW, Young JO (2000) Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biol 43:591–604

    Google Scholar 

  • Jones JI, Young JO, Eaton JW, Moss B (2002) The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J Ecol 90:12–24

    Google Scholar 

  • Körner S, Dugdale T (2003) Is roach herbivory preventing re-colonization of submerged macrophytes in a shallow lake? Hydrobiologia 506/509:497–501

    Google Scholar 

  • Körner S, Nicklisch A (2002) Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38:862–871

    Google Scholar 

  • Kraak SBM, Bakker TCM, Hocevar S (2000) Stickleback males, especially large and red ones, are more likely to nest concealed in macrophytes. Behaviour 137:907–919

    Google Scholar 

  • Lach L, Britton DK, Rundell RJ, Cowie RH (2000) Food preference and reproductive plasticity in an invasive freshwater snail. Biol Invasions 2:279–288

    Google Scholar 

  • Lauridsen TL, Pedersen LJ, Jeppesen E, Søndergaard M (1996) The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J Plank Res 18:2283–2294

    Google Scholar 

  • Lewin WC, Okun N, Mehner T (2004) Determinant of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biol 49:410–424

    Google Scholar 

  • Lewis WM (2001a) Wetlands explained: wetland science, policy and politics in America. Oxford University Press, New York

    Google Scholar 

  • Lewis DB (2001b) Trade-offs between growth and survival: responses of freshwater snails to predacious crayfish. Ecology 82:758–765

    Google Scholar 

  • Liboriussen L, Landkildehus F, Meerhoff M, Bramm ME, Søndergaard Mo, Christoffersen K, Richardson K, Søndergaard Ma, Lauridsen T, Jeppesen E (2005) Global warming: design of a flow-through shallow lake mesocosm climate experiment. Limnol Oceanogr Methods 3:1–9

    Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    Google Scholar 

  • Lindén E, Lehtiniemi M (2005) The lethal and sublethal effects of the aquatic macrophyte Myriophyllum spicatum on Baltic littoral planktivores. Limnol Oceanogr 50:405–411

    Google Scholar 

  • Lodge DM, Kershner MW, Aloi JE, Covich AP (1994) Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75:1265–1281

    Google Scholar 

  • Lombardo P (1997) Predation by Enallagma nymphs (Odonata, Zygoptera) under different conditions of spatial heterogeneity. Hydrobiologia 356:1–9

    Google Scholar 

  • Lombardo P, Cooke GD (2002) Consumption and preference of selected food types by two freshwater gastropod species. Arch Hydrobiol 155:667–685

    Google Scholar 

  • Marklund O, Blindow I, Hargeby A (2001) Distribution and diel migration of macroinvertebrates within dense submerged vegetation. Freshwater Biol 46:913–924

    Google Scholar 

  • Mckee D, Hatton K, Eaton J, Atkinson D, Atherton A, Harvey I, Moss B (2002) Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquat Bot 74:71–83

    Google Scholar 

  • Meding ME, Jackson LJ (2001) Biological implications of empirical models of winter oxygen depletion. Can J Fish Aquat Sci 58:1727–1736

    Google Scholar 

  • Meerhoff M, Mazzeo N, Moss B, Rodríguez-Gallego L (2003) The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquat Ecol 37:377–391

    Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze au die Anderd-Allelopathie. Fischer, Jena

    Google Scholar 

  • Moss B, Stephen D, Balayla DM, Bécares E, Collings SE, Fernández-Aláez C, Fernández-Aláez M, Ferriol C, García P, Gomá J, Gyllström M, Hansson L-A, Hietala J, Kairesalo T, Miracle MR, Romo S, Rueda J, Russell V, Ståhl-Delbanco A, Svensson M, Vakkilainen K, Valentín M, Van de Bund WJ, Van Donk E, Vicente E, Villena MJ (2004) Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biol 49:1633–1649

    CAS  Google Scholar 

  • Mulderij G, Van Donk E, Roelofs JGM (2003) Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia 491:261–271

    Google Scholar 

  • Mulderij G, Mooij WM, Van Donk E (2005a) Allelopathic growth inhibition and colony formation of the green alga Scenedesmus obliquus by the aquatic macrophyte Stratiotes aloides. Aquat Ecol 39:11–21

    CAS  Google Scholar 

  • Mulderij G, Mooij WM, Smolders AJP, Van Donk E (2005b) Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquat Bot 82:284–296

    Google Scholar 

  • Murphy JE, Beckmen KB, Johnson JK, Cope RB, Lawmaster T, Beasley VR (2002) Toxic and feeding deterrent effects of native aquatic macrophytes on exotic grass carp (Ctenopharyngodon idella). Ecotoxicology 11:243–254

    PubMed  CAS  Google Scholar 

  • Nurminen L, Horppila J (2002) A diurnal study on the distribution of filter feeding zooplankton: effect of emergent macrophytes pH and lake trophy. Aquat Sci 64:198–206

    CAS  Google Scholar 

  • Nurminen L, Horppila J, Lappalainen J, Malinen T (2003) Implications of rudd (Scardinius erythropthalmus) herbivory on submerged macrophytes in a shallow eutrophic lake. Hydrobiologia 506/509:511–518

    Google Scholar 

  • Nyström P, Pérez JR (1998) Fish predation on the common pond snail (Lymnaea stagnalis): the effect of habitat complexity and snail size on foraging efficiency. Hydrobiologia 368:201–208

    Google Scholar 

  • Paukert CP, Willis DW (2002) Seasonal and diel habitat selection by bluegills in a shallow natural lake. Trans Am Fish Soc 131:1131–1139

    Google Scholar 

  • Persson L, Crowder LB (1997) Fish-habitat interactions mediated via ontogenetic niche shifts. In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. (Ecolological Studies 131) Springer, Berlin Heidelberg New York, pp 3–23

    Google Scholar 

  • Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–413

    PubMed  CAS  Google Scholar 

  • Phillips GL, Eminson D, Moss B (1978) A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat Bot 4:103–126

    Google Scholar 

  • Priyadarshana T, Aeaeda T, Manatunge J (2001) Foraging behaviour of planktivorous fish in artificial vegetation: the effects on swimming and feeding. Hydrobiologia 442:231–239

    Google Scholar 

  • Rantala MJ, Ilmonen J, Koskimäki J, Suhonen J, Tynkkynen K (2004) The macrophyte, Stratiotes aloides, protects larvae of dragonfly Aeshna viridis against fish predation. Aquat Ecol 38:77–82

    Google Scholar 

  • Roberts E, Kroker J, Körner S, Nicklisch A (2003) The role of periphyton during the recolonization of shallow lake with submerged macrophytes. Hydrobiologia 506/509:525–530

    Google Scholar 

  • Rodríguez CF, Bécares E, Fernández-Aláez M (2003) Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 506/509:421–426

    Google Scholar 

  • Romare P, Berg S, Lauridsen T, Jeppesen E (2003) Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshwater Biol 48:1353–1362

    Google Scholar 

  • Rooney N, Kalff J (2000) Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquat Bot 68:321–335

    Google Scholar 

  • Rowell K, Blinn DW (2003) Herbivory on a chemically defended plant as a predation deterrent in Hyalella azteca. Freshwater Biol 48:247–254

    Google Scholar 

  • Rybak JI, Weglenska T (2003) Temporal and spatial changes in the horizontal distribution of planktonic crustacea between vegetated littoral zone and the zone of open water. Pol J Ecol 51:205–218

    Google Scholar 

  • Sagrario MDG, Balseiro E (2003) Indirect enhancement of large zooplankton by consumption of predacious macroinvertebrates by littoral fish. Arch Hydrobiol 158:551–574

    Google Scholar 

  • Sazima I, Zamprogno C (1985) Use of water hyacinth as shelter, foraging pace, and transport by young piranhas, Seeasalmus spilopleura. Environ Biol Fish 12:237–240

    Google Scholar 

  • Scheffer M (1998) Community dynamics of shallow lakes. Chapman and Hall, London

    Google Scholar 

  • Shoup DE, Carlson RE, Heath RT (2003) Effects of predations risk and foraging return on the diel use of vegetated habitat by two size-classes of bluegills. Trans Am Fish Soc 132:590–597

    Google Scholar 

  • Skov C, Berg S (1999) Utilization of natural and artificial habitats by YOY pike in a bio-manipulated lake. Hydrobiologia 408/409:115–122

    Google Scholar 

  • Skov C, Berg S, Jacobsen L, Jepsen N (2002) Habitat use and foraging success of 0+ pike (Esox lucius L.) in experimental ponds related to prey fish, water transparency and light intensity. Ecol Freshwater Fish 11:65–73

    Google Scholar 

  • Smart AC, Harper DM, Malaisse F, Schmitz S, Coley S, Gouder de Beauregard A-C (2002) Feeding of the exotic Louisiana red swamp crayfish, Procambarus clarkii (Crustacea, Decapoda), in an African tropical lake: Lake Naivasha, Kenya. Hydrobiologia 488:129–142

    Google Scholar 

  • Teal JM (1962) Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624

    Google Scholar 

  • Tolonen KT, Hämäläinen H, Holopainen IJ, Karjalainen J (2001) Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Arch Hydrobiol 152:39–67

    Google Scholar 

  • Vadeboncoeur Y, Vander Zanden MJ, Lodge DM (2002) Putting the lake back together: reintegrating benthic pathways into food web models. Bioscience 52:44–55

    Google Scholar 

  • Valley RD, Bremigan MT (2002) Effects of macrophyte bed architecture on largemouth bass foraging: implications of exotic macrophyte invasions. Trans Am Fish Soc 131:234–244

    Google Scholar 

  • Van de Meutter F, Stoks R, De Meester L (2004a) Behavioral linkage of pelagic prey and littoral predators: microhabitat selection by Daphnia induced by damselfly larvae. Oikos 107:265–272

    Google Scholar 

  • Van de Meutter F, Stoks R, De Meester L (2004b) Spatial avoidance of littoral and pelagic invertebrate predators by Daphnia. Oecologia, DOI: 10.1007/s00442-004-1738-5

    Google Scholar 

  • Van Donk E, Bund WJ van de (2002) Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274

    Google Scholar 

  • Van Donk E, Otte A (1996) Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340:285–290

    Google Scholar 

  • Vono V, Barbosa FAR (2001) Habitats and littoral zone fish community structure of two natural lakes in southeast Brazil. Environ Biol Fish 61:371–379

    Google Scholar 

  • Warfe DM, Barmuta LA (2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141:171–178

    PubMed  Google Scholar 

  • Weaver MF, Magnuson JJ, Clayton MK (1997) Distribution of littoral fishes in structurally complex macrophytes. Can J Fish Aquat Sci 54:2277–2289

    Google Scholar 

  • Williams AE, Moss B, Eaton J (2002) Fish induced macrophyte loss in shallow lake: topdown and bottom-up processes in mesocosm experiments. Freshwater Biol 47:2216–2232

    Google Scholar 

  • Winfield I (2004) Fish in the littoral zone: ecology, threats and management. Limnologica 34:124–131

    Google Scholar 

  • Wium-Andersen S (1987) Allelopathy among aquatic plants. Arch Hydrobiol Beih Erg Limnol 27:167–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burks, R.L. et al. (2006). Center Stage: The Crucial Role of Macrophytes in Regulating Trophic Interactions in Shallow Lake Wetlands. In: Bobbink, R., Beltman, B., Verhoeven, J.T.A., Whigham, D.F. (eds) Wetlands: Functioning, Biodiversity Conservation, and Restoration. Ecological Studies, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33189-6_3

Download citation

Publish with us

Policies and ethics