Hydrological Processes, Nutrient Flows and Patterns of Fens and Bogs

  • Wladimir Bleuten
  • Wiebe Borren
  • Paul H. Glaser
  • Takeo Tsuchihara
  • Elena D. Lapshina
  • Markku Mäkilä
  • Don Siegel
  • Hans Joosten
  • Martin J. Wassen
Part of the Ecological Studies book series (ECOLSTUD, volume 190)


Peat Layer Southern Taiga Peat Surface Mire Type Carbon Accumulation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bleuten W, Lapshina ED (eds) (2001) Carbon storage and atmospheric exchange by West Siberian peatlands. (FGUU scientific report 2001-1) Utrecht University, Utrecht, 169 ppGoogle Scholar
  2. Borren W, Bleuten W, Lapshina ED (2004) Holocene peat and carbon accumulation rates in the southern taiga of western Siberia. Quat Res 61:42–51CrossRefGoogle Scholar
  3. Boyer MLH, Wheeler BD (1989) Vegetation patterns in spring-fed calcareous fens: calcite precipitation and constraints on fertility. J Ecol 77:597–609CrossRefGoogle Scholar
  4. Bragg OM (2002) Hydrology of peat-forming wetlands in Scotland. Sci Total Environ 294:111–129CrossRefGoogle Scholar
  5. Dierschke H (1994) Grundlagen und Methoden der Pflanzensoziologie. Ulmer, StuttgartGoogle Scholar
  6. Glaser PH, Wheeler GA, Gorham E, Wright HE Jr (1981) The patterned mires of the Red Lake peatland, northern Minnesota: vegetation, water chemistry and landforms. J Ecol 69:575–599CrossRefGoogle Scholar
  7. Glaser PH, Siegel DI, Romanowicz EA, Shen YP (1997) Regional linkages between raised bogs and the climate, groundwater, and landscape of north-western Minnesota. J Ecol 85:3–16CrossRefGoogle Scholar
  8. Glaser PH, Siegel DI, Reeve AS, Janssens JA, Janecky DR (2004a) Tectonic drivers for vegetation patterning and landscape evolution in the Albany River region of the Hudson Bay Lowlands. J Ecol 92:1054–1070CrossRefGoogle Scholar
  9. Glaser PH, Hansen BCS, Siegel DI, Reeve AS, Morin PJ (2004b) Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario. J Ecol 92:1031–1053Google Scholar
  10. Gore AJP (1983) Mires: swamp, bog, fen and moor. (General studies. Ecosystems of the world, 4a) Elsevier, AmsterdamGoogle Scholar
  11. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195Google Scholar
  12. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model user guide to modularization concepts and the ground-water flow process. (Open-File Rep 00-92) US Geological Survey, Washington, D.C., 121 ppGoogle Scholar
  13. Heathwaite AL (ed) (1993) Mires: process, conservation and exploitation. Wiley, Chichester, 506 ppGoogle Scholar
  14. Ingram HAP (1982) Size and shape in raised mire ecosystems: a geophysical model. Nature 297:300–303CrossRefGoogle Scholar
  15. Ivanov KE (1981) Water movement in mirelands. Academic, London, 276 ppGoogle Scholar
  16. Kulczynski S (1949) Torfowiska Polesia. Peat bogs of Polesie. Mem Acad Pol Sci Lett Sci Mater Nat Ser B Sci Nat 15:1–359Google Scholar
  17. Mäkilä M (1997) Holocene lateral expansion, peat growth and carbon accumulation on Haukkasuo, a raised bog in southeastern Finland. Boreas 26:1–14CrossRefGoogle Scholar
  18. Moore PD, Bellamy DJ (1973) Peatlands. Elek Science, LondenGoogle Scholar
  19. Olde Venterink H, Wassen MJ, Verkroost AWM, Ruiter PC de (2003) Species richness-productivity patterns differ between N, P and K limited wetlands. Ecology 84:2191–2199Google Scholar
  20. Päivänen J (1973) Hydraulic conductivity and water retention in peat soils. Acta For Fenn 129:1–70Google Scholar
  21. Pałzcyński A (1984) Natural differentiation of plant communities in relation to hydrological conditions of the Biebrza valley. Pol Ecol Stud 10:347–385Google Scholar
  22. Ratcliffe D (1977) A nature conservation review, vol 1. Cambridge University Press, Cambridge, 401 ppGoogle Scholar
  23. Romanowicz EA, Siegel DI, Chanton JP, Glaser PH (1995) Temporal variations in dissolved methane deep in the Lake Agassiz peatlands, Minnesota (USA). Global Biogeochem Cycles 9:197–212CrossRefGoogle Scholar
  24. Rowell DL (1997) Bodenkunde — Untersuchungsmethoden und ihre Anwendungen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Shotyk W (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci Rev 25:95–176CrossRefGoogle Scholar
  26. Siegel DI (1983) Ground water and the evolution of patterned mires, glacial lake Agassiz peatlands, northern Minnesota. J Ecol 71:913–921CrossRefGoogle Scholar
  27. Siegel DI, Reeve AS, Glaser PH, Romanowicz E (1995) Climate-driven flushing of pore water in humified peat. Nature 374:531–533CrossRefGoogle Scholar
  28. Sjörs H (1950) On the relation between vegetation and electrolytes in North Swedish mire waters. Oikos 2:241–258Google Scholar
  29. Succow M, Joosten JHJ (2001) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 622 ppGoogle Scholar
  30. Vomperskiy SE, Ciganova OP, Kovalev AG, Glukhova TV, Valyaeva NA (1999) Waterlogged areas of Russia as a factor of consolidation of atmospheric carbon. In: Scientific Council of the Federal Research Program of Russia (ed) Global changes in environment and the climate. (Selected scientific papers. Special issue) Ministry of Education of Russia, Moscow, pp 124–145Google Scholar
  31. Waddington JM, Griffis TJ, Rouse WR (1998) Northern Canadian wetlands: net ecosystem CO2 exchange and climatic change. Clim Change 40:267–275CrossRefGoogle Scholar
  32. Wassen MJ, Joosten JHJ (1996). In search of a hydrological explanation for vegetation changes along a fen gradient in the Biebrza Upper Basin (Poland). Vegetatio 124:191–209Google Scholar
  33. Wassen MJ, Barendregt A, Palczynski A, De Smid JT, De Mars J (1992) Hydro-ecological analysis of the Biebrza mire (Poland). Wetlands Ecol Manage 2:119–134CrossRefGoogle Scholar
  34. Wassen MJ, Bleuten W, Bootsma MC (2002) Biebrza as a geographical reference. Ann Warsaw Agric Univ Land Reclam 33:27–47Google Scholar
  35. Wesseling CG, Karssenberg D, Van Deursen WPA, Burrough PA (1996) Integrating dynamic environmental models in GIS: the development of a dynamic modeling language. Trans GIS 1:40–48Google Scholar
  36. Wilmanns O (1998) Ökologische Pflanzensoziologie, 6th edn. Quelle and Meyer, Wiesbaden.Google Scholar
  37. Winston RB (1994) Models of the geomorphology, hydrology, and development of domed peat bodies. Geol Soc Am Bull 106:1594–1604CrossRefGoogle Scholar
  38. Yefremov SP, Yefremova TT (2001) Present stocks of peat and organic carbon in bog ecosystems of West Siberia. In: Bleuten W, Lapshina ED (eds) Carbon storage and atmospheric exchange by West Siberian peatlands. Utrecht University, Utrecht/Tomsk, pp 73–78Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wladimir Bleuten
    • 1
  • Wiebe Borren
    • 2
  • Paul H. Glaser
    • 3
  • Takeo Tsuchihara
    • 4
  • Elena D. Lapshina
    • 5
  • Markku Mäkilä
    • 6
  • Don Siegel
    • 7
  • Hans Joosten
    • 8
  • Martin J. Wassen
    • 9
  1. 1.Department of Physical GeographyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Centre for Limnology, Department of Microbial Wetland EcologyNetherlands Institute of Ecology (NIOO-KNAW)NieuwersluisThe Netherlands
  3. 3.Department of Geology & GeophysicsUniversity of MinnesotaMinneapolisUSA
  4. 4.Satoshi IshidaMasayuki ImaizumiTsukuba, IbarakiJapan
  5. 5.Institute of Biology and BiophysicsTomsk State UniversityTomskRussia
  6. 6.Geological Survey of FinlandEspooFinland
  7. 7.Department of Earth ScienceSyracuse UniversitySyracuseUSA
  8. 8.Botanisches InstitutErnst-Moritz-Arndt UniversitätGreifswaldGermany
  9. 9.Copernicus InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations