Linkages Between Microbial Community Composition and Biogeochemical Processes Across Scales

  • A. Ogram
  • S. Bridgham
  • R. Corstanje
  • H. Drake
  • K. Küsel
  • A. Mills
  • S. Newman
  • K. Portier
  • R. Wetzel
Part of the Ecological Studies book series (ECOLSTUD, volume 190)


Microbial Community Humic Acid Microbial Community Structure Biogeochemical Process Microbial Community Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alewell C, Gehre M (1999) Patterns of stable S isotopes in a forested catchment as indicators for biological S turnover. Biogeochemistry 47:319–333CrossRefGoogle Scholar
  2. Alewell C, Giesemann A (1996) Sulfate reduction in a forested catchment as indicated by δ34S values of sulfate in soil solutions and runoff. Isotopes Environ Health Stud 32:203–210Google Scholar
  3. Alewell C, Novak M (2001) Spotting zones of dissimilatory sulfate reduction in a forested catchment: the 34S–35S approach. Environ Pollut 112:369–377CrossRefPubMedGoogle Scholar
  4. Berge E, Bartnicki J, Olendrzynski K, Tsyro SG (1999) Long-term trends in emissions and transboundary transport of acidifying air pollution in Europe. J Environ Manage 57:31–50CrossRefGoogle Scholar
  5. Bicudo DC, Ward AK, Wetzel RG (1998) Fluxes of dissolved organic carbon within attached aquatic microbiota. Verhand Int Ver Limnol 26:1608–1613Google Scholar
  6. Blanchard GF (1990) Overlapping microscale dispersion patterns of meiofauna and microphytobenthos. Mar Ecol Prog Ser 68:101–111Google Scholar
  7. Blum LK, Roberts MS, Garland JL, Mills AL (2004) Microbial communities among the dominant high marsh plants and associated sediments of the United States east coast. Microb Ecol 48:375–388CrossRefPubMedGoogle Scholar
  8. Bowden WB (1987) The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:313–348CrossRefGoogle Scholar
  9. Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099CrossRefGoogle Scholar
  10. Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561CrossRefGoogle Scholar
  11. Bridgham SD, Updegraff K, Pastor J (2001) A comparison of nutrient availability indices along an ombrotrophic-minerotrophic gradient in Minnesota wetlands. Soil Sci Soc Am J 65:259–269CrossRefGoogle Scholar
  12. Bunnell FL, Tait DEN (1977) Microbial respiration and substrate loss. II. A model of the influences of chemical composition. Soil Biol Biochem 9:41–47CrossRefGoogle Scholar
  13. Bunnell FL, Tait DEN, Flanagan PW, Cleave K van (1977) Microbial respiration and substrate loss. I. A general model of the influences of abiotic factors. Soil Biol Biochem 9:33–40CrossRefGoogle Scholar
  14. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365CrossRefGoogle Scholar
  15. Castro H, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9PubMedGoogle Scholar
  16. Castro H, Reddy KR, Ogram A (2002) Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl Environ Microbiol 68:6129–6137CrossRefPubMedGoogle Scholar
  17. Castro H, Reddy KR, Ogram AV (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida Everglades. Appl Environ Microbiol 70:6559–6568CrossRefPubMedGoogle Scholar
  18. Castro H, Newman S, Reddy KR, Ogram AV (2005) Distribution and stability of sulfate reducing prokaryotic and hydrogenotrophic methanogenic assemblages in nutrientimpacted regions of the Florida Everglades. Appl Environ Microbiol 71:2695–2704CrossRefPubMedGoogle Scholar
  19. Cervantes FJ, Velde S van der, Lettinga G, Field JA (2000) Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol 34:161–171CrossRefPubMedGoogle Scholar
  20. Chidthaisong A, Rosenstock B, Conrad R (1999) Measurement of monosaccharides and conversion of glucose to acetate in anoxic rice field soil. Appl Environ Microbiol 65:2350–2355PubMedGoogle Scholar
  21. Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509PubMedGoogle Scholar
  22. Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Chichester, pp 39–58Google Scholar
  23. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedGoogle Scholar
  24. Corstanje R (2003) Experimental and multivariate analysis of biogeochemical indicators of change in wetland ecosystems. PhD thesis, University of Florida, Gainesville, 226 ppGoogle Scholar
  25. Cunningham HW, Wetzel RG (1989) Kinetic analysis of protein degradation by a freshwater wetland sediment community. Appl Environ Microbiol 55:1963–1967PubMedGoogle Scholar
  26. Curtis TP, Sloan WT, Scannel JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:104914–10499CrossRefGoogle Scholar
  27. DeBusk WF, Reddy KR (1998) Turnover of detrital organic carbon in a nutrientimpacted Everglades marsh. Soil Sci Soc Am J 62:1460–1468CrossRefGoogle Scholar
  28. DeBusk WF, Reddy KR, Koch MS, Wang Y (1994) Spatial distribution of soil nutrients in a northern Everglades marsh. Soil Sci Soc Am J 62:1460–1468CrossRefGoogle Scholar
  29. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed), Biology of anaerobic microorganisms. Wiley, New York, pp 417–468Google Scholar
  30. Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326CrossRefGoogle Scholar
  31. Edelman GM, Galley JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98:13763–13768CrossRefPubMedGoogle Scholar
  32. Franklin RB, Mills AL (2003) Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44:335–346CrossRefPubMedGoogle Scholar
  33. Franklin RB, Taylor DR, Mills AL (1999) Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J Microbiol Methods 35:225–235CrossRefPubMedGoogle Scholar
  34. Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store. Nature 409:149CrossRefPubMedGoogle Scholar
  35. Gauci V, Matthews E, Dise N, Walter B, Koch D, Granberg G, Vile M (2004) Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc Natl Acad Sci USA 101:12583–12587CrossRefPubMedGoogle Scholar
  36. Giblin AE, Wieder RK (1992) Sulphur cycling in marine and freshwater wetlands. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulphur cycling on the continents. Wiley, New York, pp 85–117Google Scholar
  37. Godshalk GL, Wetzel RG (1978) Decomposition of aquatic angiosperms. II. Particulate components. Aquat Bot 5:301–327CrossRefGoogle Scholar
  38. Gorham E (1995) The biogeochemistry of northern peatlands and its possible responses to global warming. In: Woodwell GM, Mackenzie FT (eds) Biotic feedbacks in the global climatic system. Oxford University Press, New York, pp 169–187Google Scholar
  39. Gorham E, Eisenreich SJ, Ford J, Santelman MV (1985) The chemistry of bog waters. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 339–363Google Scholar
  40. Haines EB, Hanson RB (1979) Experimental degradation of detritus made from the salt marsh plants Spartina alterniflora Loisel, Salicornia virginica L., and Juncus roemerianus Scheele. J Exp Mar Biol Ecol 40:27–40CrossRefGoogle Scholar
  41. Happell JD, Chanton JP, Whiting GJ, Showers WJ (1993) Stable isotopes as tracers of methane dynamics in Everglades marshes with and without active populations of methane oxidizing bacteria. J Geophys Res 98:14771–14782CrossRefGoogle Scholar
  42. Heath RT (2004) Microbial turnover of organic phosphorus in aquatic systems. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 185–204Google Scholar
  43. Hemond HF (1980) Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecol Monogr 50:507–526CrossRefGoogle Scholar
  44. Hines ME, Duddleston KN (2001) Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett 28:4251–4254CrossRefGoogle Scholar
  45. Horn MA, Matthies C, Küsel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83CrossRefPubMedGoogle Scholar
  46. Hulzen J van, Segers R, Bodegom PM van, Leffelaar PA (1999) Temperature effects on soil methane production: an explanation for observed variability. Soil Biol Biochem 31:1919–1929CrossRefGoogle Scholar
  47. Jansson PE, Berg B (1985) Temporal variation of litter decomposition in relation to simulated soil climate: long-term decopositon in a Scots pine forest. Can J Bot 63:1008–1016Google Scholar
  48. Jansson M, Olsson H, Pettersson K (1988) Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170:157–175Google Scholar
  49. Kennedy AC, Papendick RI (1995) Microbial characteristics of soil quality. J Soil Water Conserv 50:243–248Google Scholar
  50. Krumböck M, Conrad R (1991) Metabolism of position-labeled glucose in anoxic methanogenic paddy soil and lake sediment. Microb Ecol 85:247–256CrossRefGoogle Scholar
  51. Krylova NI, Conrad R (1998) Thermodynamics of propionate degradation in methanogenic paddy soil. FEMS Microbiol Ecol 26:281–288CrossRefGoogle Scholar
  52. Küsel K, Alewell C (2004) Riparian zones in a forested catchment: hot spots for microbial reductive processes. In:Matzner E (ed) Biogeochemistry of two German forested catchments in a changing environment. Springer, Berlin Heidelberg New York, pp 377–395Google Scholar
  53. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedGoogle Scholar
  54. Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45:187–192PubMedGoogle Scholar
  55. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448CrossRefGoogle Scholar
  56. Loy A, Küsel K, Lehner A, Klein M, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low sulfate, acidic fens reveal co-occurrence of recognized genera and novel lineages. Appl Environ Microbiol 70:6998–7009CrossRefPubMedGoogle Scholar
  57. Meentenmeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472CrossRefGoogle Scholar
  58. Megonigal JP, Whalen SC, Tissue DT, Bovard BD, Albert DB, Allen AS (1999) Radiocarbon cycling from photosynthesis through methanogenesis in a wetland plant-soil-atmosphere microcosm. Soil Sci Soc Am J 63:665–671CrossRefGoogle Scholar
  59. Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424CrossRefGoogle Scholar
  60. Meyer-Reil L-A (1991) Ecological aspects of enzymatic activity in marine sediments. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer, Berlin Heidelberg New York, pp 84–95Google Scholar
  61. Newman S, McCormick PV, Backus JG (2003) Phosphatase activity as an early warning indicator of wetland eutrophication: problems and prospects. J Appl Phycol 15:45–59CrossRefGoogle Scholar
  62. Nunan N, Kejian W, Young IM, Crawford JW, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215CrossRefGoogle Scholar
  63. Ogram A, Sharma K (2001) Analysis of soil microbial community structure. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology, 2nd edn. Am Soc Microbiol, Washington, D.C., pp 554–563Google Scholar
  64. Palumbo AV, Schryver JC, Fields MW, Bagwell CE, Zhou J-Z, Yan T, Liu X, Brandt CC (2004) Coupling of functional gene diversity and geochemical data from environmental samples. Appl Environ Microbiol 70:6525–6534CrossRefPubMedGoogle Scholar
  65. Pant HK, Reddy KR, Dierberg FE (2002) Bioavailability of organic phosphorus in a submerged aquatic vegetation-dominated treatment wetland. J Environ Qual 31:1748–1756PubMedCrossRefGoogle Scholar
  66. Penton CR (2004) Influences of nutrient loading, vegetative habitats and simulated drought on microbial enzyme activities in the Everglades. MS thesis, University of Florida, GainesvilleGoogle Scholar
  67. Phelps TJ, Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl Environ Microbiol 48:1088–1095PubMedGoogle Scholar
  68. Reddy KR, Wetzel RG, Kadlec R (2005) Biogeochemistry of phosphorus in wetlands. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the Environment. Soil Sci Soc Am, Madison, pp 263–316Google Scholar
  69. Rice DL (1982) The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar Ecol Prog Ser 9:153–162Google Scholar
  70. Roberts MS, Garland JL, Mills AL (2004) Microbial astronauts: assembling microbial communities for advanced life support systems. Microb Ecol 47:137–149CrossRefPubMedGoogle Scholar
  71. Roden ER, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748CrossRefGoogle Scholar
  72. Rodhe H (1990) A comparison of the contribution of various greenhouse gases to the greenhouse effect. Science 248:1217–1219CrossRefPubMedGoogle Scholar
  73. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic, San DiegoGoogle Scholar
  74. Segers R, Kengen SWM (1998) Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biol Biochem 30:1107–1117CrossRefGoogle Scholar
  75. Shannon RD, White JR (1996) The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands. Limnol Oceanog 41:435–443CrossRefGoogle Scholar
  76. Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem 26:1305–1311CrossRefGoogle Scholar
  77. Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593CrossRefGoogle Scholar
  78. Sinsabaugh RL, Carriero MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24CrossRefGoogle Scholar
  79. Sobolev D, Roden E (2002) Evidence for rapid microscale bacteria redox cycling of iron in circumneutral environments. Antonie van Leeuwenhoek 81:587–597CrossRefPubMedGoogle Scholar
  80. Stuart V, Lucas MI, Newell RC (1981) Heterotrophic utilization of particulate matter from the kelp Laminaria pallida. Mar Ecol Prog Ser 4:337–348Google Scholar
  81. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Los AngelesGoogle Scholar
  82. Tenore KR (1983) What controls the availability to animals of detritus derived from vascular plants: organic nitrogen enrichment or caloric availability? Mar Ecol Prog Ser 10:307–309Google Scholar
  83. Turner B, Newman S (2005) Phosphorus cycling in wetland soils: the importance of phosphate diesters. J Environ Qual 34:1921–1929CrossRefPubMedGoogle Scholar
  84. Updegraff K, Bridgham SD, Pastor J (1995) Temperature influences on CO2 and CH4 fluxes in intact cores from Minnesota wetlands. Bull Ecol Soc Am 76:396Google Scholar
  85. Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions in peatlands to warming and water-table manipulation. Ecol Appl 11:311–326Google Scholar
  86. Valentine DW, Holland EA, Schimel DS (1994) Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res 99:1563–1571CrossRefGoogle Scholar
  87. Valiela I, Wilson J, Buschbaum R, Rietsma C, Bryant D, Foreman K, Teal J (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35:261–269Google Scholar
  88. Vann CD, Megonigal JP (2003) Elevated CO2 and water depth regulation of methane emissions: comparison of woody and non-woody plant species. Biogeochemistry 63:117–134CrossRefGoogle Scholar
  89. Vile MA, Bridgham SD, Wieder RK, Novák M (2003) Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochem Cycles 17:1058–1064CrossRefGoogle Scholar
  90. Wetzel RG (1990) Land-water interfaces: Metabolic and limnological regulators. (Edgardo Baldi memorial lecture, 24th Congress Societas Internationalis Limnologiae) Verhand Int Ver Limnol 24:6–24Google Scholar
  91. Wetzel RG (1993) Microcommunities and microgradients: linking nutrient regeneration and high sustained aquatic primary production. Neth J Aquatic Ecol 27:3–9CrossRefGoogle Scholar
  92. Wetzel RG (1996) Benthic algae and nutrient cycling in standing freshwater ecosystems. In: Stevenson RJ, Bothwell M, Lowe R (eds) Algal ecology: benthic algae in freshwater ecosystems. Academic, New York, pp 641–667Google Scholar
  93. Wetzel RG (2005) Periphyton in the aquatic ecosystem and food webs. In: Azim E, Verdegem M, Dam A van, Beveridge M (eds) Periphyton: ecology, exploitation, and management. CABI, London, pp 51–69Google Scholar
  94. Whiting GJ, Chanton JP (1993) Primary production control of methane emissions from wetlands. Nature 364:794–795CrossRefGoogle Scholar
  95. Widdel F (1992) The genus Desulfotomaculum. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, Berlin Heidelberg, New York, pp 1792–1799Google Scholar
  96. Wieder RK, Yavitt JB, Lang GE (1990) Methane production and sulfate reduction in two Appalachian peatlands. Biogeochemistry 10:81–104CrossRefGoogle Scholar
  97. Wikstrom P, Andersson A-C, Forsman M (1999) Biomonitoring complex microbial communities using random amplified polymorphic DNA and principal component analysis. FEMS Microbiol Ecol 28:131Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Ogram
    • 1
  • S. Bridgham
    • 2
  • R. Corstanje
    • 3
  • H. Drake
    • 4
  • K. Küsel
    • 5
  • A. Mills
    • 6
  • S. Newman
    • 7
  • K. Portier
    • 3
  • R. Wetzel
  1. 1.University of FloridaGainesvilleUSA
  2. 2.University of OregonEugeneUSA
  3. 3.University of FloridaGainesvilleUSA
  4. 4.Department of Ecological MicrobiologyUniversity of BayreuthBayreuthGermany
  5. 5.Limnology Research Group, Institute of EcologyUniversity of JenaJenaGermany
  6. 6.Kennedy Space CenterUSA
  7. 7.South Florida Water Management DistrictWest Palm BeachUSA

Personalised recommendations