Skip to main content

Contrast Agent Application and Protocols

  • Chapter
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Many patient-related and injection-related factors can affect the magnitude and timing of intravenous contrast agent attenuation. MDCT, with its dramatically shorter image acquisition times, permits images with a much better utilization of the peak contrast attenuation. High iodine concentrations of contrast media and newer scanner generations are mutually conditional. The very high iodine flux rates required by cutting-edge angiographic applications can be met by low concentration iodine agents only at very high flow rates resulting in high volumes administered. Sporadic failure, though, is unpreventable at the current stage of development. This is simply due to the fact that the patient’s cardiac output is not known prior to scan initiation in most cases. MDCT is a powerful and continuously evolving technology for noninvasive imaging. CA administration is an integral part of this evolution and needs to be continuously adopted and optimized to take full advantage of this technology. A basic understanding of physiologic and pharmacokinetic principles, as well as an understanding of the effects of injection parameters on vascular and parenchymal enhancement, allows the development of optimized contrast agent delivery protocols for current and future MDCT. Scan timing will only then succeed to acquire images at peak enhancement in the tissue of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson SW, Lucey BC, Varghese JC, Soto JA (2006) Sixty-four multi-detector row computed tomography in multitrauma patient imaging: early experience. Curr Probl Diagn Radiol 35:188–198

    Article  PubMed  Google Scholar 

  • Awai K, Hiraishi K, Hori S (2004) Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230:142–150

    Article  PubMed  Google Scholar 

  • Awai K, Takada K, Onishi H, Hori S (2002) Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology 224:757–763

    Article  PubMed  Google Scholar 

  • Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  • Bae KT (2003) Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227:809–816

    Article  PubMed  Google Scholar 

  • Bae KT (2005) Test-bolus versus bolus-tracking techniques for CT angiographic timing. Radiology 236:369–370; author reply 370

    Article  PubMed  Google Scholar 

  • Bae KT, Heiken JP (2000) Computer modeling approach to contrast medium administration and scan timing for multidetector CT. In: Marincek B, Ros PR, Reiser M, Baker ME (eds) Multidetector CT: A practical guide. Springer, Berlin Heidelberg New York, pp 28–36

    Google Scholar 

  • Bae KT, Heiken JP, Brink JA (1998a) Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 207:647–655

    CAS  Google Scholar 

  • Bae KT, Heiken JP, Brink JA (1998b) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207:657–662

    CAS  Google Scholar 

  • Bae KT, Heiken JP, Brink JA (1998c) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate-pharmacokinetic analysis and experimental porcine model. Radiology 206:455–464

    CAS  Google Scholar 

  • Bae KT, Tran HQ, Heiken JP (2000) Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: Pharmacokinetic analysis and experimental porcine model. Radiology 216:872–880

    PubMed  CAS  Google Scholar 

  • Bae KT, Tran HQ, Heiken JP (2004) Uniform vascular contrast enhancement and reduced contrast medium volume achieved by using exponentially decelerated contrast material injection method. Radiology 231:732–736

    Article  PubMed  Google Scholar 

  • Becker CR, Hong C, Knez A, Leber A, Bruening R, Schoepf UJ, Reiser MF (2003) Optimal contrast application for cardiac four-detector-row computed tomography. Invest Radiol 38:690–694

    Article  PubMed  Google Scholar 

  • Cademartiri F, Luccichenti G, Marano R, Gualerzi M, Brambilla L, Coruzzi P (2004a) Comparison of monophasic vs biphasic administration of contrast material in non-invasive coronary angiography using a 16-row multidetector computed tomography. Radiol Med (Torino) 107:489–496

    Google Scholar 

  • Cademartiri F, Nieman K, van der Lugt A, Raaijmakers RH, Mollet N, Pattynama PM, de Feyter PJ, Krestin GP (2004b) Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology 233:817–823

    Article  Google Scholar 

  • Cheng CP, Herfkens RJ, Lightner AL, Taylor CA, Feinstein JA (2004) Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise. Am J Physiol Heart Circ Physiol 287:H921–926

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Leeper KV Jr (2007) Newer modalities for detection of pulmonary emboli. Am J Med 120:S2–12

    Article  PubMed  Google Scholar 

  • Fleischmann D (2003a) Use of high-concentration contrast media in multiple-detector-row CT: principles and rationale. Eur Radiol 13 (Suppl 5):M14–20

    Google Scholar 

  • Fleischmann D (2003b) Use of high concentration contrast media: principles and rationale-vascular district. Eur J Radiol 45 (Suppl 1):S88–93

    Article  Google Scholar 

  • Fleischmann D, Rubin GD (2005) Quantification of intravenously administered contrast medium transit through the peripheral arteries: implications for CT angiography. Radiology 236:1076–1082

    Article  PubMed  Google Scholar 

  • Fleischmann D, Rubin GD, Bankier AA, Hittmair K (2000) Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology 214:363–371

    PubMed  CAS  Google Scholar 

  • Gosselin MV, Rassner UA, Thieszen SL, Phillips J, Oki A (2004) Contrast dynamics during CT pulmonary angiogram: analysis of an inspiration associated artifact. J Thorac Imaging 19:1–7

    Article  PubMed  Google Scholar 

  • Haidary A, Bis K, Vrachiolitis T, Kosuri R, Balasubramaniam M (2007) Enhancement performance of a 64-slice triple rule-out protocol vs 16-slice and 10-slice multidetector CT-angiography protocols for evaluation of aortic and pulmonary vasculature. J Comput Assist Tomogr 31:917–923

    Article  PubMed  Google Scholar 

  • Heiken JP, Brink JA, McClennan BL, Sagel SS, Crowe TM, Gaines MV (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357

    PubMed  CAS  Google Scholar 

  • Hessmann MH, Hofmann A, Kreitner KF, Lott C, Rommens RM (2006) The benefit of multidetector CT in the emergency room management of polytraumatized patients. Acta Chir Belg 106:500–507

    PubMed  CAS  Google Scholar 

  • Jeltsch M, Klein S, Juchems MS, Hoffmann MHK, Aschoff AJ (2008) Objective evaluation of vessel attenuation in multidetector-row computed tomographic pulmonary angiography using high-density contrast material for the detection of pulmonary embolism. J Comput Assist Tomogr: in press

    Google Scholar 

  • Kirchner J, Kickuth R, Laufer U, Noack M, Liermann D (2000) Optimized enhancement in helical CT: experiences with a real-time bolus tracking system in 628 patients. Clin Radiol 55:368–373

    Article  PubMed  CAS  Google Scholar 

  • Konig M, Bultmann E, Bode-Schnurbus L, Koenen D, Mielke E, Heuser L (2007) Image quality in CT perfusion imaging of the brain. The role of iodine concentration. Eur Radiol 17:39–47

    Article  PubMed  Google Scholar 

  • Kormano M, Partanen K, Soimakallio S, Kivimaki T (1983) Dynamic contrast enhancement of the upper abdomen: effect of contrast medium and body weight. Invest Radiol 18:364–367

    Article  PubMed  CAS  Google Scholar 

  • Küttner A, Zunker C, Wüst W, Voit H, Wechsel M, Achenbach S, Anders K, Bautz W (2007) Optimiertes Kontrastmittel-Injektionsprotokoll für die kardiale Bildgebung unter Verwendung einer neuen Dual-Injection Technik. In: Mödder (ed) Deutscher Röntgenkongress. Thieme, Berlin

    Google Scholar 

  • Laghi A (2007) Multidetector CT (64 slices) of the liver: examination techniques. Eur Radiol 17:675–683

    Article  PubMed  Google Scholar 

  • Lee CH, Goo JM, Bae KT, Lee HJ, Kim KG, Chun EJ, Park CM, Im JG (2007a) CTA contrast enhancement of the aorta and pulmonary artery: the effect of saline chase injected at two different rates in a canine experimental model. Invest Radiol 42:486–490

    Article  Google Scholar 

  • Lee CH, Goo JM, Lee HJ, Kim KG, Im J-G, Bae KT (2007b) Determination of optimal timing window for pulmonary artery MDCT angiography. Am J Roentgenol 188:313–317

    Article  Google Scholar 

  • Megibow AJ, Jacob G, Heiken JP, Paulson EK, Hopper KD, Sica G, Saini S, Birnbaum BA, Redvanley R, Fishman EK (2001) Quantitative and qualitative evaluation of volume of low osmolality contrast medium needed for routine helical abdominal CT. AJR Am J Roentgenol 176:583–589

    PubMed  CAS  Google Scholar 

  • Roos JE, Desbiolles LM, Weishaupt D, Wildermuth S, Hilfiker PR, Marincek B, Boehm T (2004) Multi-detector row CT: effect of iodine dose reduction on hepatic and vascular enhancement. Rofo 176:556–563

    PubMed  CAS  Google Scholar 

  • Schoellnast H, Deutschmann HA, Berghold A, Fritz GA, Schaffler GJ, Tillich M (2006) MDCT angiography of the pulmonary arteries: Influence of body weight, body mass index, and scan length on arterial enhancement at different iodine flow rates. Am. J. Roentgenol. 187:1074–1078

    Article  Google Scholar 

  • Schoellnast H, Deutschmann HA, Fritz GA, Stessel U, Schaffler GJ, Tillich M (2005) MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol 184:1935–1939

    PubMed  Google Scholar 

  • Schoellnast H, Tillich M, Deutschmann HA, Stessel U, Deutschmann MJ, Schaffler GJ, Schoellnast R, Uggowitzer MM (2004a) Improvement of parenchymal and vascular enhancement using saline flush and power injection for multiple-detector-row abdominal CT. Eur Radiol 14:659–664

    Article  Google Scholar 

  • Schoellnast H, Tillich M, Deutschmann MJ, Deutschmann HA, Schaffler GJ, Portugaller HR (2004b) Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Invest Radiol 39:20–26

    Article  Google Scholar 

  • Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14:2099-2104

    Article  PubMed  Google Scholar 

  • Vrachliotis TG, Bis KG, Haidary A, Kosuri R, Balasubramaniam M, Gallagher M, Raff G, Ross M, O‘Neil B, O‘Neill W (2007) Atypical chest pain: coronary, aortic, and pulmonary vasculature enhancement at biphasic single-injection 64-section CT angiography. Radiology 243:368-376

    Article  PubMed  Google Scholar 

  • White CS, Kuo D (2007) Chest pain in the emergency department: Role of multidetector CT. Radiology 245:672–681

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann, M. (2009). Contrast Agent Application and Protocols. In: Reiser, M., Becker, C., Nikolaou, K., Glazer, G. (eds) Multislice CT. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33125-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33125-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33124-7

  • Online ISBN: 978-3-540-33125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics