Skip to main content

Dual-Energy CT–Technical Background

  • Chapter
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

With the development of Dual Source CT, simultaneously acquired Dual Energy CT has become feasible in a clinical setting. Running both x-ray tubes at different potentials, different x-ray spectra can be obtained. Thus, elements with a strongly energy dependent absorption such as iodine or xenon gas can be differentiated from other materials. A three material decomposition algorithm is applied to map the distribution of such a substance in a CT image. This approach can be used to extract further clinically relevant information from CT scans acquired at normal dose levels. For example, it is possible to identify iodine in liver or kidney tissue and to display the contrast enhancement either by colorcoding it in the CT image or by subtracting it to obtain virtual unenhanced images. This also works in lung tissue for the evaluation of pulmonary perfusion. Also, bones can be eliminated from angiography datasets by the spectral properties of calcium so that the evaluation of vessels becomes easier and faster in a maximum intensity projection. Applications without contrast material include the differentiation of kidney stones and the depiction of tendons and ligaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, Theessen H, Karakaya M, Daniel WG, Bautz W, Kalender WA, Anders K (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography–initial experience. Eur J Radiol 57:331–335

    Article  PubMed  Google Scholar 

  • Avrin DE, Macovski A, Zatz LE (1978) Clinical application of Compton and photo-electric reconstruction in computed tomography: preliminary results. Invest Radiol 13:217–222

    Article  PubMed  CAS  Google Scholar 

  • Cann CE, Gamsu G, Birnberg FA, Webb WR (1982) Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT. Radiology 145:493–496

    PubMed  CAS  Google Scholar 

  • Chapman RW, Williams G, Bydder G, Dick R, Sherlock S, Kreel L (1980) Computed tomography for determining liver iron content in primary haemochromatosis. Br Med J 280:440–442

    Article  PubMed  CAS  Google Scholar 

  • Chiro GD, Brooks RA, Kessler RM, Johnston GS, Jones AE, Herdt JR, Sheridan WT (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523

    PubMed  CAS  Google Scholar 

  • Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Kuttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  • Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551

    Article  PubMed  CAS  Google Scholar 

  • Goldberg HI, Cann CE, Moss AA, Ohto M, Brito A, Federle M (1982) Noninvasive quantitation of liver iron in dogs with hemochromatosis using dual-energy CT scanning. Invest Radiol 17:375–380

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EA, Chon D (2005) Computed tomography studies of lung ventilation and perfusion. Proc Am Thorac Soc 2:492–498, 506

    Article  PubMed  Google Scholar 

  • Johnson TR, Weckbach S, Kellner H, Reiser MF, Becker CR (2007) Clinical image: Dual-energy computed tomographic molecular imaging of gout. Arthritis Rheum 56:2809 Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, Fink C, Weckbach S, Lenhard M, Schmidt B, Flohr T, Reiser MF, Becker CR (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  • Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, Buhmann S, Knez A, Reiser MF, Becker CR (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  • Johnson TR, Nikolaou K, Fink C, Becker A, Knez A, Rist C, Reiser MF, Becker CR (2007) [Dual-source CT in chest pain diagnosis]. Radiologe 47:301–309

    Article  PubMed  Google Scholar 

  • Johnson TR, Clevert DA, Busch S, Schweyer M, Nikolaou K, Reiser MF, Becker CR (2007) Evaluation of left atrial myxoma by dual-source CT. Cardiovasc Intervent Radiol 30:1085–1086 Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71

    Google Scholar 

  • Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425

    Article  PubMed  CAS  Google Scholar 

  • Kruger RA, Riederer SJ, Mistretta CA (1977) Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys 4:244–249

    Article  PubMed  CAS  Google Scholar 

  • Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K, Reiser M, Steinbeck G, Becker CR, Knez A (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360

    Article  PubMed  Google Scholar 

  • McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512

    Article  PubMed  Google Scholar 

  • McCullough EC (1975) Photon attenuation in computed tomography. Med Phys 2:307–320

    Article  PubMed  CAS  Google Scholar 

  • Mendler MH, Bouillet P, Le Sidaner A, Lavoine E, Labrousse F, Sautereau D, Pillegand B (1998) Dual-energy CT in the diagnosis and quantification of fatty liver: Limited clinical value in comparison to ultrasound scan and single-energy CT, with special reference to iron overload. J Hepatol 28:785–794

    Article  PubMed  CAS  Google Scholar 

  • Michael GJ (1992) Tissue analysis using dual energy CT. Australas Phys Eng Sci Med 15:75–87

    PubMed  CAS  Google Scholar 

  • Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, Ryu D, Morishita S, Sultana S, Sato N, Yamashita Y (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    Article  PubMed  Google Scholar 

  • Oelckers S, Graeff W (1996) In situ measurement of iron overload in liver tissue by dual-energy methods. Phys Med Biol 41:1149–1165

    Article  PubMed  CAS  Google Scholar 

  • Raptopoulos V, Karellas A, Bernstein J, Reale FR, Constantinou C, Zawacki JK (1991) Value of dual-energy CT in differentiating focal fatty infiltration of the liver from low-density masses. AJR Am J Roentgenol 157:721–725

    PubMed  CAS  Google Scholar 

  • Riederer SJ, Mistretta CA (1977) Selective iodine imaging using K-edge energies in computerized X-ray tomography. Med Phys 4:474–481

    Article  PubMed  CAS  Google Scholar 

  • Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol (Epub 2006 Sep 19)

    Google Scholar 

  • Svendsen OL, Hassager C, Bergmann I, Christiansen C (1993) Measurement of abdominal and intra-abdominal fat in postmenopausal women by dual energy X-ray absorptiometry and anthropometry: comparison with computerized tomography. Int J Obes Relat Metab Disord 17:45–51

    PubMed  CAS  Google Scholar 

  • Wang B, Gao Z, Zou Q, Li L (2003) Quantitative diagnosis of fatty liver with dual-energy CT. An experimental study in rabbits. Acta Radiol 44:92–97

    Article  PubMed  CAS  Google Scholar 

  • Winkler SS, Holden JE, Sackett JF, Flemming DC, Alexander SC (1977) Xenon and krypton as radiographic inhalation contrast media with computerized tomography: preliminary note. Invest Radiol 12:19–20

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, T. (2009). Dual-Energy CT–Technical Background. In: Reiser, M., Becker, C., Nikolaou, K., Glazer, G. (eds) Multislice CT. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33125-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33125-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33124-7

  • Online ISBN: 978-3-540-33125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics