Skip to main content

Radiation Exposure and Protection in Multislice CT

  • Chapter
  • 2268 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Technical progress in computed tomography (CT) has substantially increased the clinical efficacy of CT procedures and offered promising new applications in diagnostic imaging. On the other hand, data from various national surveys have confirmed, as a general pattern, the growing impact of CT as a major source of patient and population exposure. From a radiation-hygienic point of view, it is thus necessary to optimize the medical benefit of CT examinations to patients, while strictly controlling and reducing their risk from the radiation exposure. It is the purpose of this chapter to summarize relevant dosimetric concepts for dose assessment in CT, to give an overview on the specific factors determining radiation exposure to patients in MSCT, and to provide suggestions for the optimization of MSCT protocols to balance patient exposure against image quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Breckow J (2006) Linear-no-threshold is a radiation-protection standard rather than a mechanistic effect model. Radiat Environ Biophys 44:257-260

    Article  PubMed  Google Scholar 

  • Brenner DJ, Sachs RK (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat Environ Biophys 44:253-256

    Article  PubMed  Google Scholar 

  • Brix G, Nekolla EA, Griebel J (2005) Strahlenexposition von Patienten durch diagnostische und interventionelle Röntgenanwendungen: Fakten, Bewertung und Trends. Der Radiologe 45:340-349

    Article  PubMed  CAS  Google Scholar 

  • Brix G, Nagel HD, Stamm G et al. (2003) Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur Radiol 13:1979-1991

    Article  PubMed  CAS  Google Scholar 

  • Brix G, Lechel U, Veit R et al. (2004) Assessment of a theoretical formalism for dose estimation in CT: an anthropomorphic phantom study. Eur Radiol 14:1275-1284

    Article  PubMed  CAS  Google Scholar 

  • Bundesamt für Strahlenschutz (2003) Bekanntmachung der diagnostischen Referenzwerte für radiologische und nuklearmedizinische Untersuchungen. Bundesanzeiger 143:17503

    Google Scholar 

  • Bundesamt für Strahlenschutz (2006) Umweltradioaktivität und Strahlenbelastung im Jahr 2005. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Berlin

    Google Scholar 

  • Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation; Nuclear and Radiation Studies Board DoEaLS, National Research Council of the National Academies (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. The National Academies Press, Washington, DC

    Google Scholar 

  • Council of the European Union (1997) Council directive 97/43/Euratom of 30 June 1997 on health protection against the dangers of ionizing radiation in relation to medical exposure, and repealing directive

    Google Scholar 

  • Cristy M, Eckerman KF (1987) Specific absorbed fractions of energy at various ages from internal photon sources, part I: Methods. ORNL Report TM-8381/V1. Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Drexler G, Panzer W, Widenmann L et al. (1990) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods, part III: Organ doses in X-ray diagnosis. GSF-Report 11/90. GSF-National Research Center for Environment and Health, Neuherberg, Germany

    Google Scholar 

  • European Commission (1999) European Guidelines on quality criteria for computed tomography. Report EUR 16262 EN. European Commission, Brussels

    Google Scholar 

  • European Commission (2001) Referral guidelines for imaging. Radiation Protection Series 118. European Commission, Luxembourg

    Google Scholar 

  • Fill U, Zankl M, Petoussi-Henss N et al. (2004) Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys 86:253-272

    Article  PubMed  CAS  Google Scholar 

  • Hart D, Jones DG, Wall BF (1994a) Normalised organ doses for medical x-ray examinations calculated using Monte Carlo techniques. NRPB Report SR262. National Radiological Protection Board, Chilton, Didcot, UK

    Google Scholar 

  • Hart D, Jones DG, Wall BF (1994b) Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements. NRPB Report 262. National Radiological Protection Board, Chilton, Didcot, UK

    Google Scholar 

  • ICRP (1991) 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Pergamon Press, Oxford, UK

    Google Scholar 

  • ICRP (1996) Radiological protection and safety in medicine. ICRP Publication 73. Pergamon Press, Oxford, UK

    Google Scholar 

  • ICRP (2007a) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103 International Commission on Radiological Protection

    Google Scholar 

  • ICRP (2007b) Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102. Elsevier Ltd, Amsterdam

    Google Scholar 

  • Mettler FAJ (2007) Magnitude of radiation uses and doses in the United States: NCRP Scientific Committee 6-2 analysis of medical exposures.

    Google Scholar 

  • Petoussi-Henss N, Zankl M, Fill U et al. (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89-106

    Article  PubMed  Google Scholar 

  • Radiological Society of North America (2004) Radiation exposure in X-ray examinations

    Google Scholar 

  • Regulla D, Eder H (2005) Patient exposure in medical X-ray imaging in Europe. Radiat Prot Dosim 114:11-25

    Article  Google Scholar 

  • Regulla D, Griebel J, Noßke D et al. (2003) Erfassung und Bewertung der Patientenexposition in der diagnostischen Radiologie und Nuklearmedizin. Zeitschrift für Medizinische Physik 13:127-135

    PubMed  Google Scholar 

  • Rosenstein M (1976) Organ doses in diagnostic radiology. HEW Publication (FDA) 76-8030. Bureau of Radiological Health, Rockville, MD

    Google Scholar 

  • Rosenstein M, Suleiman OH, Burkhart RL et al. (1992) Handbook of selected tissue doses for the upper gastrointestinal fluoroscopic examination. HHS Publication FDA 92-8282. US Department of Health and Human Service, Center for Devices and Radiological Health, Rockville, MD

    Google Scholar 

  • Schlattl H, Hoeschen C (2008) The built-in capacity of CT D‘OR‘s static ring for scatter correction. In: Hsieh J, Samei E (eds) Medical imaging. SPIE, San Diego, CA

    Google Scholar 

  • Schlattl H, Tischenko O, Hoeschen C (2006) Modeling realistic raw data for image reconstruction–Quantifying scattering noise in different CT geometries. In: Flynn MJ, Hsieh J (eds) Medical imaging 2006: Physics of medical imaging. Bellingham, WA. SPIE, San Diego, CA, pp 1656-1662

    Google Scholar 

  • Schlattl H, Zankl M, Hausleiter J et al. (2007) Local organ dose conversion coefficients for angiographic examinations of coronary arteries. Phys Med Biol 52:4393-4408

    Article  PubMed  CAS  Google Scholar 

  • Snyder WS, Ford MR, Warner GG (1978) Estimates of specific absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD pamphlet 5, revised. Society of Nuclear Medicine, New York, NY

    Google Scholar 

  • Stamm G, Nagel H-D, Galanski M CT- Expo. http://www99.mh-hannover.de/kliniken/radiologie/str_04.html

    Google Scholar 

  • Stern SH, Rosenstein M, Renaud L et al. (1995) Handbook of selected tissue doses for fluoroscopic and cineangiographic examination of the coronary arteries (in SI units). HHS Publication FDA 95-8289. US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Rockville, MD

    Google Scholar 

  • Strahlenschutzkommission (SSK) (2006) Orientierungshilfe für radiologische und nuklearmedizinische Untersuchungen, Strahlenschutzkommission (SSK) des Bundesministeriums für Umwelt NuR (ed) H. Hoffmann. GmbH–Fachverlag, Berlin

    Google Scholar 

  • Trabalka JR, Kocher DC (2007) Energy dependence of dose and dose-rate effectiveness factor for low-LET radiations: Potential importance to estimation of cancer risks and relationship to biological effectiveness. Health Phys 93:17-27

    Article  PubMed  CAS  Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  • VAMP ImPactDose. http://www.vamp-gmbh.de/software/impactdose.php

    Google Scholar 

  • Veit R, Lechel U, Truckenbrodt R et al. (2005) Does the consideration of ‘overranging’ in the calculation of effective doses for CT examinations improve the correlation of calculated with measured doses? Biomed Tech (Berl) 50:1328-1329

    Google Scholar 

  • Wall BF (2004) Radiation protection dosimetry for diagnostic radiology patients. Radiat Prot Dosim 109:409-419

    Article  CAS  Google Scholar 

  • Wambersie A, Zoetelief J, Menzel HG et al. (2005) The ICRU (International Commission on Radiation Units and Measurements): its contribution to dosimetry in diagnostic and interventional radiology. Radiat Prot Dosim 117:7-12

    Article  CAS  Google Scholar 

  • Winslow M, Huda W, Xu XG et al. (2004) Use of the VIP-Man model to calculate energy imparted and effective dose for X-ray examinations. Health Phys 86:174-182

    Article  PubMed  CAS  Google Scholar 

  • Zankl M, Fill U, Petoussi-Henss N et al. (2002) Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys Med Biol 47:2367-2385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoeschen, C., Regulla, D., Zankl, M., Schlattl, H., Brix, G. (2009). Radiation Exposure and Protection in Multislice CT. In: Reiser, M., Becker, C., Nikolaou, K., Glazer, G. (eds) Multislice CT. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33125-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33125-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33124-7

  • Online ISBN: 978-3-540-33125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics