Skip to main content

Complementary Roles of Coronary CT and Myocardial Perfusion SPECT

  • Chapter
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2198 Accesses

Abstract

Appropriate diagnosis and therapy of CAD frequently requires information about both the morphological and functional status of the coronary artery tree. Thus, combined imaging consisting of invasive coronary angiography (ICA) and myocardial perfusion imaging (MPI) has been practiced in clinical routine diagnostics of patients with stable angina for many years, and can therefore be accepted as the reference standard in the diagnosis of hemodynamically relevant coronary artery stenoses. Both morphological and functional information are mandatory for the decision of performing an interventional therapy or initiating/maintaining medical treatment in numerous symptomatic patients. The hemodynamic relevance of coronary artery lesions is a major condition in deciding whether an interventional therapy should be performed. A noninvasive concept providing both morphological and functional information could provide accurate allocation of perfusion defects to their determining coronary lesion, and specific morphological and functional classification of patients with CAD. Complementary effects were observed for the combination of CTA and MPI in patients with suspected or known CAD, particularly when 3D image fusion was performed. Additionally, in the setting of patient screening, CT calcium scoring is accepted for exclusion of present CAD. Otherwise, in cases of coronary calcium burden >400, the probability of present ischemia increases to 25%, so that these patients require further functional diagnostic-like MPI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach S, Ulzheimer S et al. (2000) Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102:2823–2828

    PubMed  CAS  Google Scholar 

  • Achenbach S, Daniel WG et al. (2001) Noninvasive coronary angiography—an acceptable alternative? N Engl J Med 345:1909–1910

    Article  PubMed  CAS  Google Scholar 

  • Achenbach S, Ropers D et al. (2002) Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 106:1077–7782

    Article  PubMed  CAS  Google Scholar 

  • Anand DV, Lim E et al. (2004) Prevalence of silent myocardial ischemia in asymptomatic individuals with subclinical atherosclerosis detected by electron beam tomography. J Nucl Cardiol 11:450–457

    Article  PubMed  Google Scholar 

  • Anand DV, Lim E et al. (2006) Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 27:713–721

    Article  PubMed  Google Scholar 

  • Arad Y, Goodman KJ et al. (2005) Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 46:158–165

    Article  PubMed  CAS  Google Scholar 

  • Beller GA, Zaret BL (2000) Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 101:1465–1478

    PubMed  CAS  Google Scholar 

  • Berman DS, Wong ND et al. (2004) Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 44:923–930

    Article  PubMed  CAS  Google Scholar 

  • Brindis RG, Douglas PS et al. (2005) ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI): a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group and the American Society of Nuclear Cardiology endorsed by the American Heart Association. J Am Coll Cardiol 46:1587–1605

    Article  PubMed  Google Scholar 

  • Budoff MJ, Diamond DA et al. (2002) Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105:1791–1796

    Article  PubMed  Google Scholar 

  • Chamuleau SA, Meuwissen M et al. (2002) Usefulness of fractional flow reserve for risk stratification of patients with multivessel coronary artery disease and an intermediate stenosis. Am J Cardiol 89:377–380

    Article  PubMed  Google Scholar 

  • Di Carli MF, Hachamovitch R (2007) New technology for noninvasive evaluation of coronary artery disease. Circulation 115:1464–1480

    Article  PubMed  Google Scholar 

  • Faber TL, Santana CA et al. (2004) Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: clinical validation. J Nucl Med 45:745–753

    PubMed  Google Scholar 

  • Gaemperli O, Schepis T et al. (2007) Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 34:1097–1106

    Article  PubMed  Google Scholar 

  • Gibbons RS (1996) American Society of Nuclear Cardiology project on myocardial perfusion imaging: measuring outcomes in response to emerging guidelines. J Nucl Cardiol 3:436–442

    Article  PubMed  CAS  Google Scholar 

  • Guerci AD, Spadaro LA et al. (1998) Comparison of electron beam computed tomography scanning and conventional risk factor assessment for the prediction of angiographic coronary artery disease. J Am Coll Cardiol 32:673–679

    Article  PubMed  CAS  Google Scholar 

  • Haberl R, Becker A et al. (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 37:451–457

    Article  PubMed  CAS  Google Scholar 

  • Hacker M, Jakobs T et al. (2005) Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 46:1294–1300

    PubMed  Google Scholar 

  • Hacker M, Jakobs T et al. (2007) Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging 34:4–10

    Article  PubMed  Google Scholar 

  • He ZX, Hedrick TD et al. (2000) Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 101:244–251

    PubMed  CAS  Google Scholar 

  • Hoffmann MH, Shi H et al. (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann U, Moselewski F et al. (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  • Hong C, Becker CR et al. (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220:712–717

    Article  PubMed  CAS  Google Scholar 

  • Iskander S, Iskandrian AE (1998) Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol 32:57–62

    Article  PubMed  CAS  Google Scholar 

  • Klocke FJ, Baird MG et al. (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging) Circulation 108:1404–1418

    Article  PubMed  Google Scholar 

  • Knez A, Becker CR et al. (2001) Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am J Cardiol 88:1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Kondos GT, Hoff JA et al. (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5,635 initially asymptomatic low- to intermediate-risk adults. Circulation 107:2571–2576

    Article  PubMed  Google Scholar 

  • Kopp AF, Schroeder S et al. (2002) Noninvasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients. Eur Heart J 23:1714–1725

    PubMed  CAS  Google Scholar 

  • Kuettner A, Kopp AF et al. (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43:831–839

    Article  PubMed  Google Scholar 

  • Kuettner A, Trabold T et al. (2004) Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results. J Am Coll Cardiol 44:1230–1237

    PubMed  Google Scholar 

  • Leber AW, Knez A et al. (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  • Leschka S, Alkadhi H et al. (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  • Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    PubMed  CAS  Google Scholar 

  • Lima RS, Watson DD et al. (2003) Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 42:64–70

    Article  PubMed  Google Scholar 

  • Mahmarian JJ (2007) Combining myocardial perfusion imaging with computed tomography for diagnosis of coronary artery disease. Curr Opin Cardiol 22:413–4121

    Article  PubMed  Google Scholar 

  • Mollet NR, Cademartiri F et al. (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  • Mollet NR, Cademartiri F et al. (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–23

    Article  PubMed  Google Scholar 

  • Mollet NR, Cademartiri F et al. (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 3:3

    Google Scholar 

  • Moser KW, O’Keefe JH Jr et al. (2003) Coronary calcium screening in asymptomatic patients as a guide to risk factor modification and stress myocardial perfusion imaging. J Nucl Cardiol 10:590–598

    Article  PubMed  Google Scholar 

  • Nieman K, Cademartiri F et al. (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  • Pugliese F, Mollet NR et al. (2005) Diagnostic accuracy of noninvasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol: 1–8

    Google Scholar 

  • Raggi P, Callister TQ et al. (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855

    PubMed  CAS  Google Scholar 

  • Raggi P, Callister TQ et al. (2004) Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol 24:1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Ropers D, Baum U et al. (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–6

    Article  PubMed  Google Scholar 

  • Rozanski A, Gransar H et al. (2007) Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J Am Coll Cardiol 49:1352–1361

    Article  PubMed  CAS  Google Scholar 

  • Rumberger JA, Simons DB et al. (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162

    PubMed  CAS  Google Scholar 

  • Schindler TH, Magosaki N et al. (1999) Fusion imaging: combined visualization of 3D reconstructed coronary artery tree and 3D myocardial scintigraphic image in coronary artery disease. Int J Card Imaging 15:357–368; discussion 369–370

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Raggi P et al. (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228:826–833

    Article  PubMed  Google Scholar 

  • Smith SC Jr, Dove JT et al. (2001) ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines)-executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the Society for Cardiac Angiography and Interventions. Circulation 103:3019–3041

    PubMed  Google Scholar 

  • Taillefer R, DePuey EG et al. (1997) Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 29:69–77

    Article  PubMed  CAS  Google Scholar 

  • Taylor AJ, Bindeman J et al. (2005) Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol 46:807–814

    Article  PubMed  CAS  Google Scholar 

  • Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    PubMed  CAS  Google Scholar 

  • Wayhs R, Zelinger A et al. (2002) High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol 39:225–230

    Article  PubMed  Google Scholar 

  • White CW, Wright CW et al. (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    PubMed  CAS  Google Scholar 

  • Wong ND, Hsu JC et al. (2000) Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 86:495–498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hacker, M. (2009). Complementary Roles of Coronary CT and Myocardial Perfusion SPECT. In: Reiser, M., Becker, C., Nikolaou, K., Glazer, G. (eds) Multislice CT. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33125-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33125-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33124-7

  • Online ISBN: 978-3-540-33125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics