Skip to main content

Visualizing Contingency Tables

  • Chapter
Handbook of Data Visualization

Part of the book series: Springer Handbooks Comp.Statistics ((SHCS))

Abstract

Categorical data analysis is typically based on two- or higher dimensional contingency tables, cross-tabulating the co-occurrences of levels of nominal and/or ordinal data. In order to explain these, statisticians typically look for (conditional) independence structures using common methods such as independence tests and log-linear models. One idea behind the use of visualization techniques is to use the human visual system to detect structures in the data that may not be obvious fromsolely numeric output (e.g., test statistics). Whether the task is purely exploratory or modelbased, techniques such as mosaic, sieve, and association plots offer good support for visualization. Mosaic and sieve plots in particular have been extended over the last two decades, and implementations exist in many statistical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agresti, A. (2002). Categorical Data Analysis. Wiley, Hoboken, NJ, 2nd edn.

    MATH  Google Scholar 

  • Andersen, E.B. (1991). The Statistical Analysis of Categorical Data. Springer, Berlin, 2nd edn.

    Google Scholar 

  • Bickel, P.J., Hammel, E.A. and O’Connell, J.W. (1975). Sex bias in graduate admissions: Data from Berkeley. Science, 187:398–403.

    Article  Google Scholar 

  • Brewer, C.A. (1999). Color use guidelines for data representation. In Proceedings of the Section on Statistical Graphics, American Statistical Association, Alexandria, VA, pp 55–60.

    Google Scholar 

  • Cleveland, W.S. and McGill, R. (1983). A color-caused optical illusion on a statistical graph. The American Statistician, 37:101–105.

    Article  Google Scholar 

  • Cohen, A. (1980). On the graphical display of the significant components in a two-way contingency table. Communications in Statistics – Theory and Methods, A9:1025–1041.

    Article  Google Scholar 

  • Commission Internationale de l’Éclairage (2004). Colorimetry. Publication CIE 15:2004, Vienna, Austria, 3rd edn. ISBN 3-901-90633-9.

    Google Scholar 

  • Ernst, M.D. (2004). Permutation methods: A basis for exact inference. Statistical Science, 19:676–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Friendly, M. (1994). Mosaic displays for multi-way contingency tables. Journal of the American Statistical Association, 89:190–200.

    Article  Google Scholar 

  • Friendly, M. (1999). Extending mosaic displays: Marginal, conditional, and partial views of categorical data. Journal of Computational and Graphical Statistics, 8(3):373–395.

    Article  Google Scholar 

  • Friendly, M. (2000). Visualizing Categorical Data. SAS Institute, Carey, NC.

    Google Scholar 

  • Haberman, S.J. (1974). Log-linear models for frequency tables with ordered classifications. Biometrics, 30:689–700.

    Article  MathSciNet  Google Scholar 

  • Harrower, M.A. and Brewer, C.A. (2003). ColorBrewer.org: An online tool for selecting color schemes for maps. The Cartographic Journal, 40:27–37.

    Article  Google Scholar 

  • Hartigan, J.A. and Kleiner, B. (1981). Mosaics for contingency tables. In W.F. Eddy (ed) Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface, Springer, New York, pp 268–273.

    Google Scholar 

  • Hartigan, J.A. and Kleiner, B. (1984). A mosaic of television ratings. The American Statistician, 38:32–35.

    Article  Google Scholar 

  • Hofmann, H. (2001). Generalized odds ratios for visual modelling. Journal of Computational and Graphical Statistics, 10:1–13.

    Article  MathSciNet  Google Scholar 

  • Hummel, J. (1996). Linked bar charts: Analysing categorical data graphically. Computational Statistics, 11:23–33.

    MATH  Google Scholar 

  • Ihaka, R. (2003). Colour for presentation graphics. In K. Hornik, F. Leisch and A. Zeileis (eds), Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria. ISSN 1609-395X.

    Google Scholar 

  • Insightful Inc. (2005). S-PLUS 7. Seattle, WA.

    Google Scholar 

  • Koch, G. and Edwards, S. (1988). Clinical efficiency trials with categorical data. In K.E. Peace (ed), Biopharmaceutical Statistics for Drug Development, pp 403–451. Marcel Dekker, New York.

    Google Scholar 

  • Ligges, U. and Mächler, M. (2003). scatterplot3d – an R package for visualizing multivariate data. Journal of Statistical Software, 8(11):1–20.

    Google Scholar 

  • Mazanec, J.A. and Strasser, H. (2000). A Nonparametric Approach to Perceptions-based Market Segmentation: Foundations. Springer, Berlin.

    Google Scholar 

  • Meyer, D., Zeileis, A. and Hornik, K. (2003). Visualizing independence using extended association plots. In K. Hornik, F. Leisch and A. Zeileis (eds), Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria. ISSN 1609-395X.

    Google Scholar 

  • Meyer, D., Zeileis, A. and Hornik, K. (2006). The strucplot framework: Visualizing multi-way contingency tables with vcd. Journal of Statistical Software, 17(3):1–48.

    Google Scholar 

  • Meyer, D., Zeileis, A. and Hornik, K. (2006). vcd: Visualizing Categorical Data. R package version 1.0-6.

    Google Scholar 

  • Mollon, J. (1995). Seeing color. In T. Lamb and J. Bourriau (eds), Colour: Art and Science. Cambridge University Press, Cambridge.

    Google Scholar 

  • Moretti, G. and Lyons, P. (2002). Tools for the selection of colour palettes. In Proceedings of the New Zealand Symposium On Computer-Human Interaction (SIGCHI 2002), University of Waikato, New Zealand.

    Google Scholar 

  • Munsell, A.H. (1905). A Color Notation. Munsell Color Company, Boston, MA.

    Google Scholar 

  • Patefield, W.M. (1981). An efficient method of generating r×c tables with given row and column totals. Applied Statistics, 30:91–97. Algorithm AS 159.

    Google Scholar 

  • Pesarin, F. (2001). Multivariate Permutation Tests. Wiley, Chichester, UK.

    MATH  Google Scholar 

  • Poynton, C. (2000). Frequently-asked questions about color. http://www.poynton.com/ColorFAQ.html. Accessed 2006-09-14.

    Google Scholar 

  • SAS Institute Inc. (2005). SAS/STAT Version 9. Cary, NC.

    Google Scholar 

  • R Development Core Team (2006). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3.

    Google Scholar 

  • Riedwyl, H. and Schüpbach, M. (1994). Parquet diagram to plot contingency tables. In F. Faulbaum (ed), Softstat ’93: Advances in Statistical Software, pp 293–299, Gustav Fischer, New York.

    Google Scholar 

  • Strasser, H. and Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical Methods of Statistics, 8:220–250.

    MATH  MathSciNet  Google Scholar 

  • Theus, M. (2003). Interactive data visualization using Mondrian. Journal of Statistical Software, 7(11):1–9.

    Google Scholar 

  • Theus, M. and Lauer, S.R.W. (1999). Visualizing loglinear models. Journal of Computational and Graphical Statistics, 8(3):396–412.

    Article  Google Scholar 

  • Unwin, A.R., Hawkins, G., Hofmann, H. and Siegl, B. (1996). Interactive graphics for data sets with missing values – MANET. Journal of Computational and Graphical Statistics, 4(6):113–122.

    Article  Google Scholar 

  • Wing, J.K. (1962). Institutionalism in mental hospitals. British Journal of Social Clinical Psychology, 1:38–51.

    Google Scholar 

  • Young, F.W. (1996). ViSta: The visual statistics system. Technical Report 94–1(c), UNC L.L. Thurstone Psychometric Laboratory Research Memorandum.

    Google Scholar 

  • Zeileis, A., Meyer, D. and Hornik, K. (2007). Residual-based shadings for visualizing (conditional) independence. Journal of Computational and Graphical Statistics, 16(3):507–525.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, D., Zeileis, A., Hornik, K. (2008). Visualizing Contingency Tables. In: Handbook of Data Visualization. Springer Handbooks Comp.Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33037-0_23

Download citation

Publish with us

Policies and ethics