Skip to main content

Data Visualization via Kernel Machines

  • Chapter
Handbook of Data Visualization

Part of the book series: Springer Handbooks Comp.Statistics ((SHCS))

Abstract

Due to the rapid development of information technology in recent years, it is common to encounter enormousamounts of data collected fromdiverse sources.This has led to a great demand for innovative analytic tools that can handle the kinds of complex data sets that cannot be tackled using traditional statistical methods. Modern data visualization techniques face a similar situation and must also provide adequate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizerman, M.A., Braverman, E.M. and Rozoner, L.I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821–837.

    Google Scholar 

  • Akaho, S. (2001). A kernel method for canonical correlation analysis. In: International Meeting of Psychometric Society (IMPS2001), 15–19 July 2001, Osaka, Japan.

    Google Scholar 

  • Alpaydin, E. (2004). Introduction to Machine Learning. MIT Press, Cambridge.

    Google Scholar 

  • Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337–404.

    Article  MATH  MathSciNet  Google Scholar 

  • Bach, F. and Jordan, M.I. (2002). Kernel independent component analysis. Journal of Machine Learning Research, 3:1–48.

    Article  MathSciNet  Google Scholar 

  • Ben-Hur, A., Horn, D., Siegelmann, H.T. and Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2:125–137.

    Article  Google Scholar 

  • Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Boston, MA.

    Google Scholar 

  • Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In: Valient, L. and Warmuth, M. (eds) Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. ACM Press, Pittsburgh, PA, 5:144–152.

    Google Scholar 

  • Hardoon, D.R., Szedmak, S. and Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12): 2639–2664.

    Article  MATH  Google Scholar 

  • Hein, M. and Bousquet, O. (2004). Kernels, associated structures and generalizations. Technical report, Max Planck Institute for Biological Cybernetics, Germany. http://www.kyb.tuebingen.mpg.de/techreports.html.

    Google Scholar 

  • Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28:321–377.

    MATH  Google Scholar 

  • Lee, Y.J., Hsieh, W.F. and Huang, C.M. (2005). ε-SSVR: A smooth support vector machine for ε-insensitive regression. IEEE Transactions on Knowledge and Data Engineering, 17(5): 678–685.

    Article  Google Scholar 

  • Lee, Y.J. and Huang, S.Y. (2007). Reduced support vector machines: a statistical theory. IEEE Transactions on Neural Networks, 18:1–13.

    Article  Google Scholar 

  • Lee, Y.J. and Mangasarian, O.L. (2001a). RSVM: Reduced support vector machines. In: Kumar, V. and Grossman, R. (eds) Proceedings of the First SIAM International Conference on Data Mining. SIAM, Philadephia, PA.

    Google Scholar 

  • Lee, Y.J. and Mangasarian, O.L. (2001b). SSVM: A smooth support vector machine for classification. Computational Optimization and Applications, 20(1): 5–22.

    Article  MATH  MathSciNet  Google Scholar 

  • MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. In: Le Cam, L. and Neyman, J. (eds) Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, CA, 1:281–297.

    Google Scholar 

  • Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Probability and Mathematical Statistics: A Series of Monographs and Textbooks. Academic, New York.

    MATH  Google Scholar 

  • Schölkopf, B., Burges, C. and Smola, A. (1999). Kernel principal component analysis. Advances in Kernel Methods – Support Vector Learning, 327–352. MIT Press, Cambridge, MA.

    Google Scholar 

  • Schölkopf, B., Smola, A. and Müller, K. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5): 1299–1319.

    Article  Google Scholar 

  • Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chang, Yc., Lee, YJ., Pao, HK., Lee, MH., Huang, SY. (2008). Data Visualization via Kernel Machines. In: Handbook of Data Visualization. Springer Handbooks Comp.Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33037-0_21

Download citation

Publish with us

Policies and ethics