Skip to main content

Invasive Coronary Imaging

  • Chapter
Coronary Radiology

Abstract

The study of the circulation by cardiac catheterisation started in 1844 when Claude Bernard performed retrograde left and right heart catheterisation, from the jugular vein and carotid artery, in a horse. Application of these principles and techniques in patients was made possible by the discovery of X-rays by William Conrad Roentgen (1845–1923) on November 8, 1895, at the University of Wurzburg. He received the Nobel Prize for his discovery in 1901. Roentgen’s discovery enabled Werner Forssmann to perform the first cardiac catheterisation on himself under fluoroscopic guidance in 1929 in a small hospital in Eberswald in Germany. He passed a urethral catheter from an arm vein into his right heart. To do this he needed the co-operation of a surgical nurse whom he persuaded to help against the orders of his hospital chief. Forssmann wrote of his findings in 1929 (Forssman 1929); however, the medical establishment failed to recognise his findings. He gave up his work and continued training as a urological surgeon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams HL, Adams DF (1975) The complications of coronary angiography. Circulation 52[Suppl 2]:27

    Google Scholar 

  • Adams DF, Fraser DB, Abrams HL (1973) The complications of coronary angiography. Circulation 48:609

    CAS  PubMed  Google Scholar 

  • Agatston AS, Janowitz WR, Nobuyuki A, Gasso J, Hildner F, Viamonte M (1991) Quantification of coronary calcium reflects the angiographic extent of coronary disease. Circulation 84:II–159

    Google Scholar 

  • Angelini P (1989) Normal and anomalous coronary arteries definitions and classification. Am Heart J 117:418–434

    Article  CAS  PubMed  Google Scholar 

  • Aramburu O, Mesa C, Arias JL, Izquierdo G, Perez-Cano R (2000) Spinal cord infarctions as a complication of coronary angiography. Rev Neurol 30:651–654

    CAS  PubMed  Google Scholar 

  • Arora P, Naik N, Bahl VK, Mishra S, Yadav R, Sharma S, Manchanda SC (2002) Coronary angiography using 4 French catheters with power injection: a randomized comparison with 6 French catheters. Indian Heart J 54:184–188

    PubMed  Google Scholar 

  • Basso C, Maron BJ, Corrado D (2000) Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol 35:1493–1501

    Article  CAS  PubMed  Google Scholar 

  • Bellman S, Frank HA, Lambert PB, Littman D, Williams JA (1960) Coronary arteriography: differential opacification of aortic stream catheters of special design. Experimental development. N Engl J Med 262:325

    Article  CAS  PubMed  Google Scholar 

  • Boehrer JD, Ellis SG, Pieper K, Holmes DR, Keeler GP, Debowey D, Chapekis AT, Leya F, Mooney MR, Gotleib RS et al. (1995) Directional atherectomy versus balloon angioplasty for coronary ostial and nonostial left anterior descending coronary artery lesions: results from a randomized multicentre trial. The CAVEAT-I investigators. Coronary Angioplasty Versus Excisional Aatherectomy Trial. JACC 25:1380–1386

    CAS  PubMed  Google Scholar 

  • Bogren HG, Bursch JH (1984) Digital angiography in the diagnosis of congenital heart disease. Cardiovasc Intervent Radiol 7:180–191

    Article  CAS  PubMed  Google Scholar 

  • Brannon ES, Weens HS, Warren JW (1945) Atrial septal defect: study of hemodynamics by the technique of right heart catheterisation. Am J Med Sci 210:480

    Article  Google Scholar 

  • Carter AJ, Scott D, Bailey I (1998) Stent design: in the end it matters. Circulation 961:402

    Google Scholar 

  • Cournand A, Ranges HA (1944) Catheterization of the right auricle in man. Proc Soc Exp Biol Med 55:34

    Google Scholar 

  • Cumberland DC, Sanborn TA, Taylor DI, Moore DJ (1986) Percutaneous laser thermal angioplasty: initial clinical results with a laser probe in total peripheral artery occlusions. Lancet 1:1457–1459

    Article  CAS  PubMed  Google Scholar 

  • Donaldson RM, Raphael M Radley-Smith R, Patterson FK (1982) Sudden death in a young adult with anomalous origin of the posterior circumflex artery. South Med J 75:748

    Google Scholar 

  • Dos Santos R, Lamas AC, Perierira-Caldas J (1929) Arteriographia da aorta e dose vasos abdominalis. Med Contemp 47 Dotter CT, Judkins MD (1964) Transluminal treatment of arteriosclerotic obstruction: description of a new technique and a preliminary report of its application. Circulation 30:654

    Google Scholar 

  • Douglas JS, King SB (2001) Percutaneous coronary intervention. In: Fuster V, Alexander RW, O’Rourke RA (eds) Hurst’s The Heart, 10th edn. McGraw-Hill, New York, pp 1440–1442

    Google Scholar 

  • Effer DB, Sheldon WC, Turner JJ, Groves LK (1967) Coronary arteriovenous fistulas: diagnosis and surgical management. Report of 15 cases. Surgery 61:41

    Google Scholar 

  • EPIC Investigators (1994) Use of monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high risk coronary angioplasty. N Eng J Med 330:956–961

    Article  Google Scholar 

  • EPISTENT Investigators (1997) Randomised placebo controlled and balloon angioplasty controlled trial to assess safety of coronary stenting with the use of platelet glycoprotein-IIb/IIIa Blockade. Lancet 349:1429–1435

    Article  Google Scholar 

  • Forssman W (1929) The catheterisation of the right side of the heart. Klin Wochenschr 8:2085

    Article  Google Scholar 

  • Franch RH, King SB, Douglas JS (1982) Techniques of cardiac catheterisation including coronary arteriography. In: Hurst JW (ed) The heart, 5th edn. McGraw-Hill, New York, p 1866

    Google Scholar 

  • Gibbons RJ, Balady GJ, Timothy Bricker J, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG, Winters WL, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Committee to Update the 1997 Exercise Testing Guidelines (2002) ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol 40:1531–1540

    Google Scholar 

  • Grover M, Slutsky R, Higgins C, Atwood JE (1984) Terminology and anatomy of angulated coronary arteriography. Clin Cardiol 7:37

    Article  CAS  PubMed  Google Scholar 

  • Grüntzig AR (1978) Transluminal dilatation of coronary artery stenosis. Lancet 1:263

    Article  PubMed  Google Scholar 

  • Grüntzig A, Hopff H (1974) Percutaneous recanalization after chronic arterial occlusion with a new dilator-catheter (modification of the Dotter technique). Dtsch Med Wochenschr 99:2502–10, 2511

    Article  PubMed  Google Scholar 

  • Hansen DD, Auth DC, Vrocko R, Richie JL (1988) Rotational atherectomy in atherosclerotic rabbit iliac arteries. Am Heart J 115:160–165

    Article  CAS  PubMed  Google Scholar 

  • Harikrishnan S, Sunder KR, Tharakan J, Titus T, Bhat A, Sivasankaran S, Bimal F (1999) Clinical and angiographic profile and follow-up of myocardial bridges: a study of 21 cases. Indian Heart J 51:503–507

    CAS  PubMed  Google Scholar 

  • Huiskens CJ, Hummel WA (1995) Data analysis on radiation exposures in cardiac angiography. Radiat Protect Dosim 57:475–480

    Google Scholar 

  • Hung MJ, Kuo LT, Wang CH, Cherng WJ (2002) Irreversible myocardial damage after coronary air embolism. Angiology. 53:213–216

    Article  PubMed  Google Scholar 

  • Judkins MP (1967) Selective coronary arteriography: a percutaneous transfemoral technique. Radiology 89:815

    CAS  PubMed  Google Scholar 

  • Judkins MP, Judkins E (1985) Coronary arteriography and left ventriculography: Judkins technique. In: King S, Douglas JS (eds) Coronary arteriography and coronary angioplasty. McGraw-Hill, New York, pp 182–238

    Google Scholar 

  • Katus HA, Richardt G.A, Jain D, Kurz T (2001) Unique complication during coronary angiography: peripheral embolism by selective right coronary engagement. Angiology 52:493–499

    Article  PubMed  Google Scholar 

  • Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361:13–20

    Article  PubMed  Google Scholar 

  • Kennedy JW (1981) Complications associated with cardiac catheterisation and angiography. Report of the registry committee of the society of cardiac angiography. Coronary disease today. Proceedings of an international symposium, Utrecht, 25-27 May

    Google Scholar 

  • Kennedy JW (1983) Report of the registry committee, Society for Cardiac Angiography, Annual meeting, Scottsdale Arizona May

    Google Scholar 

  • Klein O (1930) Zur Bestimmung des Zerkulatorischen Minutens Volumen nach dem Fickschen Princip. Munch Med Wochenschr 77:1311

    Google Scholar 

  • Kwok BW, Lim TT (2000) Cortical blindness following coronary angiography. Singapore Med J 41:604–605

    CAS  PubMed  Google Scholar 

  • Lasky W, Boyle J, Johnson LW (1993) Multivariable model for prediction of risk of significant complication during diagnostic cardiac catheterisation. The registry committee of the Society for Cardiac angiography and interventions. Cathet Cardiovasc Diagn 30:185–190

    Article  Google Scholar 

  • Limacher MC, Douglas PS, Germano G, Laskey WK, Lindsay BD et al. (1998) ACC expert consensus document. Radiation safety in the practice of cardiology. American College of Cardiology. J Am Coll Cardiol 31:892–913

    Article  CAS  PubMed  Google Scholar 

  • Mancini GBJ (1988) Clinical applications of cardiac digital angiography. Raven, New York

    Google Scholar 

  • Meier B, Bachmann D, Lüscher TF (2003) 25 Years of coronary angioplasty: almost a fairy tale. Lancet 361:527

    Article  PubMed  Google Scholar 

  • Michalis LK, Rees MR, Davis JAS, Pappa EC, Naka KKM, Rokkas S, Agrios N, Loukas S, Goudevenos J, Sideris DA (1999) Use of vibrational angioplasty for the treatment of chronic total coronary occlusions: preliminary results. Cathet Cardiovasc Interv 46:98–104

    Article  CAS  Google Scholar 

  • Mintz GS, Iskandrian AS, Benis CE et al. (1983) Myocardial ischaemia in anomalous origin of the right coronary artery from the pulmonary trunk. Am J Cardiol 51:610

    Article  CAS  PubMed  Google Scholar 

  • Moore RJ (1990) Imaging principles of cardiac angiography. Aspen, Rockville Ogden JA (1970) Congenital anomalies of the coronary arteries. J Cardiol 25:474

    Google Scholar 

  • Paulin S (1966) Coronary arteriography. Postgrad Med. 40: A53–59; and 100:232–240 (1997)

    CAS  PubMed  Google Scholar 

  • Paulin S, von Schulthness GK, Fossel E, Krayenbuehl HP (1987) MR imaging of the aortic root and proximal coronary arteries. AJR Am J Roentgenol 148:665–670

    CAS  PubMed  Google Scholar 

  • Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, el Gamal MI (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92:3183–3193

    CAS  PubMed  Google Scholar 

  • Rees MR, Cripps T (2002) The use of imaging in chest pain. CARS Proceedings 2002, Springer, Berlin Heidelberg New York, p890–894

    Google Scholar 

  • Reiber JH, van der Zwet PM, Koning G et al. (1993) Accuracy and precision of quantitative digital coronary arteriography: observer, short and medium term variables. Cathet Cardiovasc Diagn 28:187–198

    CAS  PubMed  Google Scholar 

  • Richens D, Rees MR, Watson D (1987) Laser coronary angioplasty under direct vision. Lancet ii:183

    Google Scholar 

  • Robb RG, Steinberg I (1938) A practical method of visualisation of the chambers of the heart, the pulmonary circulation and the great blood vessels in man. J Clin Invest 17:507

    Google Scholar 

  • Roncoroni A, Weischelbaum E, Vedoya RC, Kaplan MV, Navia JA, Favarolo JJ, Favarolo RG (1973) Surgical treatment of coronary disease. Angiologia 25:183–189

    CAS  PubMed  Google Scholar 

  • Ross J Jr (1959) Transseptal left heart catheterisation: a new method of left atrial puncture. Ann Surg 149:395

    Article  PubMed  Google Scholar 

  • Scanlon PJ, Faxon DP (1999) ACC/AHA Guidelines for coronary angiography. J Am Coll Cardiol 33:1756–1824

    Article  CAS  PubMed  Google Scholar 

  • Seldinger SI (1953) Catheter replacement of the needle in percutaneous arteriography. Acta Radiol 39:368–376

    Article  CAS  PubMed  Google Scholar 

  • Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenburger L (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty N Eng J Med 316:701–706

    Article  CAS  Google Scholar 

  • Simpson JB, Baim DS, Robert EW, Harrison DC (1982) A new catheter system for coronary angioplasty. Am J Cardiol 49:216–222

    Article  Google Scholar 

  • Simpson JB, Robertson GC, Selmon R (1988) Percutaneous coronary atherectomy. J Am Coll cardiol 11:110A

    Google Scholar 

  • Smith SC, Dove JT, Jacobs AK, Kennedy JW, Kereiakes D, Kern MJ, Kuntz RE, Popma JJ, Schaff HV et al. (2001) ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines) — executive summary: a report of the American College of Cardiology/ American Heart Association Task Force on practice guidelines (Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 37:2215–2239

    Article  PubMed  Google Scholar 

  • Sones FM Jr., Shirey EK, Proudfit WL, Wescott RN (1959) Cine coronary arteriography. Circulation 20:773

    Google Scholar 

  • Stack RS, Perez JA, Newman GE, McCann RL, Wholey MH, Cummins FE, Galichia JT, Hoffman PU, Tcheng JE, Sketch MH, Lee MM, Phillips HR (1989) Treatment of peripheral vascular disease with the transluminal extraction catheter: results of a multicentre study. J Am Coll Cardiol 13:227A

    Google Scholar 

  • Swan HJC, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterisation of the heart in man with use of a flow directed balloon tipped catheter. N Eng J Med 283:447

    CAS  Google Scholar 

  • Timurkaynak T, Ciftci H, Cemri M (2001) Coronary artery perforation: a rare complication of coronary angiography. Source Acta Cardiologica 56:323–325

    Article  CAS  Google Scholar 

  • Tuinenburg JC, Koning G, Hekking E, Zwinderman AH, Becker T, Simon R, Reiber JH (2000) American College of Cardiology/European Society of Cardiology International Study of Angiographic Data Compression Phase II: the effects of varying JPEG data compression levels on the quantitative assessment of the degree of stenosis in digital coronary angiography. Joint Photographic Experts Group. J Am Coll Cardiol 35:1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Vano E, Goicolea J, Galvan C, Gonzalez L, Meiggs L, Ten JI, Macaya C (2001) Institution skin radiation injuries in patients following repeated coronary angioplasty procedures. Br J Radiol 74:1023–31

    CAS  PubMed  Google Scholar 

  • Vlodaver Z, Neufeld HN, Edwards JE (1972) Pathology of coronary disease. Semin Roentgenol 7:376–394

    Article  CAS  PubMed  Google Scholar 

  • Waller DA, Sivananthan UM, Diament RH, Kester RC, Rees MR (1993) Iatrogenic vascular injury following arterial cannulation: the importance of early surgery. Cardiovasc Surg 1:251–253

    CAS  PubMed  Google Scholar 

  • Wilson WJ, Lee GB, Amplatz K (1967) Biplane selective coronary arteriography via a percutaneous transfemoral approach. Am J Roentgenol Radium Ther Nucl Med 100:318–321

    CAS  PubMed  Google Scholar 

  • Yacoub MH, Ross DN (1983) Angiographic identification of primary coronary anomalies causing impaired myocardial perfusion. Cathet Cardiovasc Diagn 9:237

    Article  PubMed  Google Scholar 

  • Yock P, Linker D, Saether O et al. (1988) Intravascular two dimensional catheter ultrasound: initial clinical studies. Circulation 78[suppl II]:II–21

    Google Scholar 

  • Zimmerman HA, Scott RW, Becker NO (1950) Catheterisation of the left side of the heart in man Circulation 1:357

    CAS  Google Scholar 

  • Zorzetto M, Bernardi G, Moraccutti G, Fontanelli A (1997) Radiation exposure to patients and operators during diagnostic catheterisation and coronary angioplasty. Cathet Cardiovasc Diagn 40:348–351

    Article  CAS  PubMed  Google Scholar 

References

  • Adame IM, Koning PJH de, Lelieveldt BPF, Wasserman BA, Reiber JHC, Geest RJ van der (2006) An integrated automated analysis method for quantifying vessel stenosis and plaque burden from carotid MR images: combined post-processing of MRA and vessel wall MR. Stroke 37:2162–2164. [Epub 2006 Jun 29]

    Article  PubMed  Google Scholar 

  • Beauman G, Reiber JHC, Koning G, van Houdt R, Vogel R (1994) Angiographic core laboratories analyses of arterial phantom images: comparative evaluations of accuracy and precision. In: Reiber JHC, Serruys PW (eds) Progress in quantitative coronary arteriography. Kluwer Academic Publishers, Dordrecht, pp 87–104

    Google Scholar 

  • Brown BG, Bolson E, Frimer M, Dodge HT (1977) Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 55:329–337

    CAS  PubMed  Google Scholar 

  • Bruschke AVG, Wijers TS, Kolsters W, Landmann J (1981) The anatomic evolution of coronary artery disease demonstrated by coronary arteriography in 256 nonoperated patients. Circulation 63:527–536

    CAS  PubMed  Google Scholar 

  • Büchi M, Hess OM, Kirkeeide RL, Suter T, Muser M, Osenberg HP et al. (1990) Validation of a new automatic system for biplane quantitative coronary arteriography. Int J Card Imaging 5:93–103

    Article  PubMed  Google Scholar 

  • Chen SJ, Carroll JD (2000) 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Trans Med Imaging 19:318–336

    Article  CAS  PubMed  Google Scholar 

  • de Feyter PJ, Vos J, Reiber JHC, Serruys PW (1993) Value and limitations of quantitative coronary angiography to assess progression and regression. In: Reiber JHC, Serruys PW (eds) Advances in quantitative coronary arteriography. Kluwer Academic Publishers, Dordrecht, pp 255–271

    Google Scholar 

  • Dijkstra J, Koning G, Reiber JHC (1999) Quantitative measurements in IVUS images. Int J Card Imaging 15:513–522

    Article  CAS  PubMed  Google Scholar 

  • Geijer H (2002) Radiation dose and image quality in diagnostic radiology. Optimalization of the dose-image quality relationship with clinical experience from scoliosis radiography, coronary intervention and a flat panel digital detector. Acta Radiol Suppl 43:1–43

    PubMed  Google Scholar 

  • Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Heintzen P (1971) Roentgen-, cine-and videodensitometry. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Holmes DR Jr, Laskey WK, Wondrow MA, Cusma JT (2004) Flat-panel detectors in the cardiac catheterization laboratory: revolution or evolution — what are the issues? Cathet Cardiovasc Intervent 63:324–330

    Article  Google Scholar 

  • Ishii Y, van Weert AWM, Hekking E, de Marie K, ter Horst J, Oemrawsingh PV et al. (2001) A novel quantitative method for evaluating diffuse in-stent narrowing at follow-up angiography. Cathet Cardiovasc Intervent 54:309–317

    Article  CAS  Google Scholar 

  • Janssen JP, Koning G, de Koning PJ, Tuinenburg JC, Reiber JHC (2002) A novel approach for the detection of pathlines in X-ray angiograms: the wavefront propagation algorithm. Int J Cardiovasc Imaging 18:317–324

    Article  PubMed  Google Scholar 

  • Janssen JP, Koning G, de Koning PJ, Tuinenburg JC, Reiber JH (2004) Validation of a new method for the detection of pathlines in vascular X-ray images. Invest Radiol 39:524–530

    Article  PubMed  Google Scholar 

  • Jukema JW, Bruschke AVG, Reiber JHC (1996) Lessons learned from angiographic coronary atherosclerosis trials. In: Reiber JHC, van der Wall EE (eds) Cardiovascular imaging. Kluwer Academic Publishers, Dordrecht/ Boston/London, pp 119–132

    Google Scholar 

  • Kalbfleisch SJ, McGillem MJ, Simon SB, DeBoe SF, Pinto IM, Mancini GB (1990) Automated quantitation of indexes of coronary lesion complexity. Comparison between patients with stable and unstable angina. Circulation 82:439–447

    CAS  PubMed  Google Scholar 

  • Kirkeeide RL (1991) Coronary obstructions, morphology and physiologic significance. In: Reiber JHC, Serruys PW (eds) Quantitative coronary arteriography. Kluwer Academic Publishers, Dordrecht, pp 229–244

    Google Scholar 

  • Kirkeeide RL, Fung P, Smalling RW, Gould KL (1982) Automated evaluation of vessel diameter from arteriograms. Computers in Cardiology, 215–218 Los Alamitos, CA, IEEE-Computer Society Press

    Google Scholar 

  • Lansky AJ, Desai KJ, Bonon R, Koning G, Tuinenburg J, Reiber JHC (2002) Quantitative coronary angiography methodology in vascular brachytherapy II. In: Waksman R, (ed) Vascular brachytherapy, 3rd edn. Futura Publishing Co., Inc Amronk, NY, pp 543–562

    Google Scholar 

  • Leber AW, Becker A, Knez A, Ziegler F von, Sirol M, Nikolaou K et al. (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system. J Am Coll Cardiol 47:672–677

    Article  PubMed  Google Scholar 

  • Lefevre T, Louvard Y, Morice MC, Loubeyre C, Piechaud JF, Dumas P (2001) Stenting of bifurcation lesions: a rational approach. J Interv Cardiol 14:573–585

    Article  CAS  PubMed  Google Scholar 

  • Lespérance J, Bilodeau L, Reiber JHC, Koning G, Hudon G, Bourassa M (1998) Issues in the performance of quantitative coronary angiography in clinical research trials. In: Reiber JHC, van der Wall EE (eds) What’s new in cardiovascular imaging? Kluwer Academic Publishers, Dordrecht, pp 31–46

    Google Scholar 

  • Nasu K, Tsuchikane E, Katoh O, Vince G, Virmani R, Surmely JF et al. (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47:2405–2412. [Epub 2006 May 30]

    Article  PubMed  Google Scholar 

  • Oost E, Koning G, Sonka M, Oemrawsingh PV, Reiber JH, Lelieveldt BP (2006) Automated contour detection in Xray left ventricular angiograms using multiview active appearance models and dynamic programming. IEEE Trans Med Imaging 25:1158–1171

    Article  PubMed  Google Scholar 

  • Pinto TL, Waksman R (2006) Clinical applications of optical coherence tomography. J Interv Cardiol 19:566–573

    Article  PubMed  Google Scholar 

  • Reiber JHC (1991) An overview of coronary quantitation techniques as of 1989. In: Reiber JHC, Serruys PW (eds) Quantitative coronary arteriography. Kluwer Academic Publishers, Dordrecht, pp 55–132

    Google Scholar 

  • Reiber JHC, Serruys PW (1991) Quantitative coronary angiography. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL (eds) Cardiac imaging: a companion to Braunwald’s Heart Disease. W.B. Saunders Company, Philadelphia, pp 211–281

    Google Scholar 

  • Reiber JHC, Booman F, Tan H, Slager CJ, Schuurbiers JC, Gerbrands JJ et al. (1978) A cardiac image analysis system. Objective quantitative processing of angiocardiograms. IEEE Comp Cardiol 239–242

    Google Scholar 

  • Reiber JHC, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands JJ et al. (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71:280–288

    CAS  PubMed  Google Scholar 

  • Reiber JHC, Serruys PW, Slager CJ (1986) Quantitative coronary and left ventricular cineangiography: methodology and clinical applications. Martinus Nijhoff, Boston

    Google Scholar 

  • Reiber JHC, van der Zwet PM, Koning G, von Land CD, van Meurs B, Gerbrands JJ et al. (1993) Accuracy and precision of quantitative digital coronary arteriography: observer-, short-, and medium-term variabilities. Cathet Cardiovasc Diagn 28:187–198

    CAS  PubMed  Google Scholar 

  • Reiber JHC, von Land CD, Koning G, van der Zwet PM, van Houdt R, Schalij M et al. (1994a) Comparison of accuracy and precision of quantitative coronary arterial analysis between cinefilm and digital systems. In: Reiber JHC, Serruys PW (eds) Progress in quantitative coronary arteriography. Kluwer Academic, Publishers Dordrecht, pp 67–85

    Google Scholar 

  • Reiber JHC, Koning G, von Land CD, van der Zwet PM (1994b) Why and how should QCA systems be validated? In: Reiber JHC, Serruys PW (eds) Progress in quantitative coronary arteriography. Kluwer Academic Publishers, Dordrecht, pp 33–48

    Google Scholar 

  • Reiber JHC, Jukema JW, Koning G, Bruschke AVG (1996b) Quality control in quantitative coronary arteriography. In: Bruschke AVG, Reiber JHC, Lie KI, Wellens HJJ (eds) Lipid lowering therapy and progression of coronary artherosclerosis. Kluwer Academic Publishers Dordrecht, pp 45–63

    Google Scholar 

  • Reiber JHC, Schiemanck L, van der Zwet PM, Goedhart B, Koning G, Lammertsma M et al. (1996a) State of the art in quantitative coronary arteriography as of 1996. In: Reiber JHC, van der Wall EE (eds) Cardiovascular imaging. Kluwer Academic Publishers, Dordrecht, pp 39–56

    Google Scholar 

  • Reiber JHC, Koning G, Dijkstra J, Wahle A, Goedhart B, Sheehan FH et al. (2001) Angiography and intravascular ultrasound. In: Sonka M, Fitzpatrick JM (eds) Handbook of medical imaging — vol. 2: medical image processing and analysis. SPIE Press Belligham, WA, pp 711–808

    Google Scholar 

  • Schaar JA, Regar E, Mastik F, McFadden EP, Saia F, Disco C et al. (2004) Incidence of high-strain patterns in human coronary arteries: assessment with three-dimensional intravascular palpography and correlation with clinical presentation. Circulation 109:2716–9. [Epub 2004 May 24]

    Article  PubMed  Google Scholar 

  • Schaar JA, van der Steen AF, Mastik F, Baldewsing RA, Serruys PW (2006) Intravascular palpography for vulnerable plaque assessment. J Am Coll Cardiol 47[8 Suppl]:C86–91

    Article  PubMed  Google Scholar 

  • Sonka M, Reddy GK, Winniford MD, Collins SM (1997) Adaptive approach to accurate analysis of small-diameter vessels in cineangiograms. IEEE Trans Med Imaging 16:87–95

    Article  CAS  PubMed  Google Scholar 

  • Spahn M, Heer V, Freytag R (2003) Flat-panel detectors in X-ray systems. Radiologe 43:340–350

    Article  CAS  PubMed  Google Scholar 

  • Stiel GM, Stiel LS, Schofer J, Donath K, Mathey DG (1989) Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographic assessment of coronary artery disease. Circulation 80:1603–1609

    CAS  PubMed  Google Scholar 

  • Tardif JC, Lee H (1998) Applications of intravascular ultrasound in cardiology. In: Reiber JHC, van der Wall EE (eds) What’s new in cardiovascular imaging. Kluwer Academic Publishers, Dordrecht, pp 133–148

    Google Scholar 

  • Tsapaki V, Kottou S, Kollaros N, Dafnomilli P, Koutelou M, Vano E et al. (2004) Comparison of a conventional and flat-panel digital system in interventional cardiology procedures. Br J Radiol 77:562–577

    Article  CAS  PubMed  Google Scholar 

  • Tuinenburg JC, Koning G, Hekking E, Desjardins C, Harel F, Bilodeau L et al. (2002) One core lab at two international sites, is that feasible? An inter-core lab and intraobserver variability study. Cathet Cardiovasc Intervent 56:333–340

    Article  Google Scholar 

  • Tuinenburg JC, Koning G, Seppenwoolde Y, Reiber JHC (2006) Is there an effect of flat-panel-based imaging systems on quantitative coronary and vascular angiography? Cathet Cardiovasc Intervent 68:561–566

    Article  Google Scholar 

  • van der Zwet PM, Reiber JHC (1994) A new approach for the quantification of complex lesion morphology: the gradient field transform; basic principles and validation results. J Am Coll Cardiol 24:216–224

    Article  PubMed  Google Scholar 

  • van der Zwet PM, Meyer DJ, Reiber JHC (1995) Automated and accurate assessment of the distribution, magnitude, and direction of pincushion distortion in angiographic images. Invest Radiol 30:204–213

    Article  PubMed  Google Scholar 

  • Wahle A, Wellnhofer E, Mugaragu I, Sauer HU, Oswald H, Fleck E (1995) Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3D reconstruction from biplane angiograms. IEEE Trans Med Imaging 14:230–241

    Article  CAS  PubMed  Google Scholar 

References

  • Abizaid AS, Mintz GS, Mehran R et al. (1999) Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation 100:256–261

    CAS  PubMed  Google Scholar 

  • Bartorelli AL, Neville RF, Keren G et al. (1992) In vitro and in vivo intravascular ultrasound imaging. Eur Heart J 13:102–108

    CAS  PubMed  Google Scholar 

  • Bridal SL, Fornes P, Bruneval P et al. (1997) Parametric (integrated backscatter and attenuation) images constructed using backscattered radio frequency signal (25-56 MHz) from human aortae in vitro. Ultrasound Med Biol 23:215–29

    Article  CAS  PubMed  Google Scholar 

  • Colombo A, Hall P, Nakamura S et al. (1995) Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91:1676–1688

    CAS  PubMed  Google Scholar 

  • de Feyter PJ, Ozaki Y, Baptista J et al. (1995) Ischemia-related lesion characteristics in patients with stable or unstable angina. A study with intracoronary angioscopy and ultrasound. Circulation 92:1408–1413

    PubMed  Google Scholar 

  • Di Mario C, The SH, Madretsma S et al. (1992) Detection and characterization of vascular lesions by intravascular ultrasound: an in vitro study correlated with histology. J Am Soc Echocardiogr 5:135–146

    PubMed  Google Scholar 

  • Di Mario C, Görge C, Peters R et al. (1998) Clinical application and image interpretation in intracoronary ultrasound. Study Group on Intracoronary Imaging of the Working Group of Coronary Circulation and of the Subgroup on Intravascular Ultrasound of the Working Group of Echocardiography of the European Society of Cardiology. Eur Heart J 19:207–229

    Article  PubMed  Google Scholar 

  • Fitzgeral PJ, St Goar FG, Connolly AJ et al. (1992) Intravascular ultrasound imaging of coronary arteries. Is three layers the norm? Circulation 86:154–158

    Google Scholar 

  • Fitzgerald PJ, Yock C, Yock PG (1998) Orientation of intracoronary ultrasonography: looking beyond the artery. J Am Soc Echocardiogr 11:13–19

    Article  CAS  PubMed  Google Scholar 

  • Friedrich GJ, Moes NY, Mühlberger VA et al. (1994) Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J 128:435–441

    Article  CAS  PubMed  Google Scholar 

  • Fuster V, Lewis A (1994) Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90:2126–2146

    CAS  PubMed  Google Scholar 

  • Ge J, Liu F, Görge G et al. (1995) Angiographically’ silent’ plaque in the left main coronary artery detected by intravascular ultrasound. Coron Artery Dis 6:805–810

    Article  CAS  PubMed  Google Scholar 

  • Gerber TC, Erbel R, Görge G et al. (1994) Extent of atherosclerosis and remodeling of the left main coronary artery determined by intravascular ultrasound. Am J Cardiol 73:666–671

    Article  CAS  PubMed  Google Scholar 

  • Glagov S, Weisenberg E, Zarins CK et al. (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Gussenhoven EJ, Essed CE, Lancee CT et al. (1989) Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 14:947–952

    Article  CAS  PubMed  Google Scholar 

  • Hausmann D, Erbel R, Alibelli-Chemarin MJ et al. (1995) The safety of intracoronary ultrasound. A multicenter survey of 2207 examinations. Circulation 91:623–630

    CAS  PubMed  Google Scholar 

  • Hausmann D, Johnson JA, Sudhir K et al. (1996) Angiographically silent atherosclerosis detected by intravascular ultrasound in patients with familial hypercholesterolemia and familial combined hyperlipidemia: correlation with high density lipoproteins. J Am Cardiol 27:1562–1570

    Article  CAS  Google Scholar 

  • Hermiller JB, Tenaglia AN, Kisslo KB et al. (1993) In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol 71:665–668

    Article  CAS  PubMed  Google Scholar 

  • Hiro T, Leung CY, De Guzman S et al. (1997) Are soft echoes really soft? Intravascular ultrasound assessment of mechanical properties in human atherosclerotic tissue. Am Heart J 133:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hiro T, Fujii T, Yasumoto K et al. (2001) Detection of fibrous cap in atherosclerotic plaque by intravascular ultrasound by use of color mapping of angle-dependent echo-intensity variation. Circulation 103:1206–1211

    CAS  PubMed  Google Scholar 

  • Hodgson JM, Reddy KG, Suneja R et al. (1993) Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 21:35–44

    Article  CAS  PubMed  Google Scholar 

  • Hodgson JM, Graham SP, Savakus AD et al. (1989) Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging. 4:187–193

    Article  CAS  PubMed  Google Scholar 

  • Jasti V, Ivan E, Yalamanchili V, Wongpraparut N, Leesar MA (2004) Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 110:2831–2836

    Article  PubMed  Google Scholar 

  • Kearney P, Erbel R, Rupprecht HJ et al. (1996) Differences in the morphology of unstable and stable coronary lesions and their impact on the mechanisms of angioplasty. An in vivo study with intravascular ultrasound. Eur Heart J 17:721–730

    CAS  PubMed  Google Scholar 

  • Kimura BJ, Russo RJ, Bhargava V et al. (1996) Atheroma morphology and distribution in proximal left anterior descending coronary artery: in vivo observations. J Am Coll Cardiol 27:825–831

    Article  CAS  PubMed  Google Scholar 

  • Kotani J, Mintz GS, Castagna MT et al. (2003) Intravascular ultrasound analysis of infarct-related and non-infarctrelated arteries in patients who presented with an acute myocardial infarction. Circulation 107:2889–2893

    Article  PubMed  Google Scholar 

  • Lockwood GR, Ryan LK, Gotlieb AI et al. (1992) In vitro high resolution intravascular imaging in muscular and elastic arteries. J Am Coll Cardiol 20:153–160

    Article  CAS  PubMed  Google Scholar 

  • Losordo DW, Rosenfield K, Kaufman J et al. (1994) Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. In vivo documentation using intravascular ultrasound. Circulation 89:2570–2577

    CAS  PubMed  Google Scholar 

  • Mallery JA, Tobis JM, Griffith J et al. (1990) Assessment of normal and atherosclerotic arterial wall thickness with an intravascular ultrasound imaging catheter. Am Heart J 119:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Mintz GS, Douek P, Pichard AD et al. (1992) Target lesion calcification in coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 20:1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Mintz GS, Painter JA, Pichard AD et al. (1995) Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25:1479–1485

    Article  CAS  PubMed  Google Scholar 

  • Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37:1478–1492

    Article  CAS  PubMed  Google Scholar 

  • Mudra H, di Mario C, de Jaegere P, Figulla HR, Macaya C, Zahn R, Wennerblom B, Rutsch W, Voudris V, Regar E, Henneke KH, Schachinger V, Zeiher A (2001) OPTICUS (OPTimization with ICUS to reduce stent restenosis) Study Investigators. Randomized comparison of coronary stent implantation under ultrasound or angiographic guidance to reduce stent restenosis (OPTICUS Study). Circulation 104:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Nishioka T, Luo H, Eigler NL et al. (1996) Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: an in vivo intravascular ultrasound study. J Am Coll Cardiol 27:1571–1576

    Article  CAS  PubMed  Google Scholar 

  • Nissen SE, Grines CL, Gurley JC, Sublett K, Haynie D, Diaz C, Booth DC, DeMaria AN (1990) Application of a new phased-array ultrasound imaging catheter in the assessment of vascular dimensions. In vivo comparison to cineangiography. Circulation 81:660–666

    CAS  PubMed  Google Scholar 

  • Nissen SE, De Franco AC, Tuzcu EM et al. (1995) Coronary intravascular ultrasound: diagnostic and interventional applications. Coron Artery Dis 6:355–367

    Article  CAS  PubMed  Google Scholar 

  • Pandian NG, Kreis A, Brockway B et al. (1988) Ultrasound angioscopy: real-time, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol 62:493–494

    Article  CAS  PubMed  Google Scholar 

  • Pasterkamp G, Wensing PJ, Post MJ et al. (1995) Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation 91:1444–1449

    CAS  PubMed  Google Scholar 

  • Pasterkamp G, Borst C, Post MJ et al. (1996) Atherosclerotic arterial remodeling in the superficial femoral artery. Individual variation in local compensatory enlargement response. Circulation 93:1818–1825

    CAS  PubMed  Google Scholar 

  • Peters RJ, Kok WE, Havenith MG et al. (1994) Histopathologic validation of intracoronary ultrasound imaging. J Am Soc Echocardiogr 7(3 Pt 1):230–241

    CAS  PubMed  Google Scholar 

  • Peters RJ, Kok WE, Di Mario C, Serruys PW, Bar FW, Pasterkamp G, Borst C, Kamp O, Bronzwaer JG, Visser CA, Piek JJ, Panday RN, Jaarsma W, Savalle L, Bom N (1997) Prediction of restenosis after coronary balloon angioplasty. Results of PICTURE (Post-IntraCoronary Treatment Ultrasound Result Evaluation), a prospective multicenter intracoronary ultrasound imaging study. Circulation 95:2254–2261

    CAS  PubMed  Google Scholar 

  • Pinto FJ, Chenzbraun A, Botas J et al. (1994) Feasibility of serial intracoronary ultrasound imaging for assessment of progression of intimal proliferation in cardiac transplant recipients. Circulation 90:2348–255

    CAS  PubMed  Google Scholar 

  • Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, Leon MB (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81:1575–1585

    CAS  PubMed  Google Scholar 

  • Roelandt JR, di Mario C, Pandian NG et al. (1994) Threedimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems and directions. Circulation 90:1044–1055

    CAS  PubMed  Google Scholar 

  • Schoenhagen P, Ziada KM, Kapadia SR et al. (2000) Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101:598–603

    CAS  PubMed  Google Scholar 

  • St. Goar FG, Pinto FJ, Alderman EL et al. (1992) Detection of coronary atherosclerosis in young adult hearts using intravascular ultrasound. Circulation 86:756–763

    Google Scholar 

  • Tobis JM, Mallery J, Mahon D et al. (1991) Intravascular ultrasound imaging of human coronary arteries in vivo. Analysis of tissue characterizations with comparison to in vitro histological specimens. Circulation 83:913–926

    CAS  PubMed  Google Scholar 

  • Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    CAS  PubMed  Google Scholar 

  • von Birgelen C, de Vrey EA, Mintz GS et al. (1997) ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation 96:2944–2952

    Google Scholar 

  • Wong CB, Porter TR, Xie F et al. (1995) Segmental analysis of coronary arteries with equivalent plaque burden by intravascular ultrasound in patients with and without angiographically significant coronary artery disease. Am J Cardiol 76:598–601

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M, Terashima M, Awano K, Kijima M, Nakatani S, Daikoku S, Ito K, Yasumura Y, Miyatake K (2000) Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol. 35:106–111

    Article  CAS  PubMed  Google Scholar 

  • Yeung AC, Davis SF, Hauptman PJ et al. (1995) Incidence and progression of transplant coronary artery disease over 1 year: results of a multicenter trial with use of intravascular ultrasound. Multicenter Intravascular Ultrasound Transplant Study Group. J. Heart Lung Transplant 14(6 Pt 2):S215–20

    Google Scholar 

  • Yock PG, Johnsen EL, Linker DT (1988) Intravascular ultrasound: development and clinical potential. Am J Card Imaging 2:185–93

    Google Scholar 

References

  • Bruining N, von Birgelen C, Di Mario C et al. (1995) Dynamic three-dimensional reconstruction of ICUS images based on an ecg-gated pull-back device. Paper presented at: Computers In Cardiology, Vienna

    Google Scholar 

  • Bruining N, von Birgelen C, Mallus MT et al. (1996) ECGgated ICUS image acquisition combined with a semiautomated contour detection provides accurate analysis of vessel dimensions. Paper presented at: Computers In Cardiology, Indianapolis

    Google Scholar 

  • Bruining N, von Birgelen C, de Feyter PJ et al. (1998) ECGgated versus nongated three-dimensional intracoronary ultrasound analysis: implications for volumetric measurements. Cathet Cardiovasc Diagn 43:254–260

    Article  CAS  PubMed  Google Scholar 

  • Bruining N, Sabate M, de Feyter PJ et al. (1999) Quantitative measurements of in-stent restenosis: a comparison between quantitative coronary ultrasound and quantitative coronary angiography. Catheter Cardiovasc Interv 48:133–142

    Article  CAS  PubMed  Google Scholar 

  • De Winter SA, Hamers R, Degertekin M et al. (2004) Retrospective image-based gating of intracoronary ultrasound images for improved quantitative analysis: The intelligate method. Catheter Cardiovasc Interv 61:84–94

    Article  PubMed  Google Scholar 

  • Degawa T, Yagami H, Takahashi K et al. (2001) Validation of a novel wire-type intravascular ultrasound imaging catheter. Catheter Cardiovasc Interv 52:127–133

    Article  CAS  PubMed  Google Scholar 

  • Di Mario C, von Birgelen C, Prati F et al. (1995) Three-dimensional reconstruction of intracoronary ultrasound: clinical of research tool? Br Heart J 73[Suppl 2]:26–32

    Article  PubMed  Google Scholar 

  • Evans JL, Ng KH, Vonesh MJ et al. (1994) Arterial imaging with a new forward-viewing intravascular ultrasound Catheter, I. Initial studies. Circulation 89:712–717

    CAS  PubMed  Google Scholar 

  • Li W, von Birgelen C, Di Mario C et al. (1994) Semi-automated contour detection for volumetric quantification of intracoronary ultrasound. Paper presented at: Computers in cardiology, Washington

    Google Scholar 

  • Mintz GS, Pichard AD, Satler LF et al. (1993) Three-dimensional intravascular ultrasonography: reconstruction of endovascular stents in vitro and in vivo. J Clin Ultrasound 21:609–615

    Article  CAS  PubMed  Google Scholar 

  • Ng KH, Evans JL, Vonesh MJ et al. (1994) Arterial imaging with a new forward-viewing intravascular ultrasound catheter, II. Three-dimensional reconstruction and display of data. Circulation 89:718–723

    CAS  PubMed  Google Scholar 

  • Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103:604–616

    CAS  PubMed  Google Scholar 

  • Roelandt JR, di Mario C, Pandian NG et al. (1994) Threedimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems, and directions. Circulation 90:1044–1055

    CAS  PubMed  Google Scholar 

  • Rosenfield K, Losordo DW, Ramaswamy K et al. (1991) Three-dimensional reconstruction of human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation 84:1938–1956

    CAS  PubMed  Google Scholar 

  • Schuurbiers JC, von Birgelen C, Wentzel JJ et al. (2000) On the IVUS plaque volume error in coronary arteries when neglecting curvature. Ultrasound Med Biol 26:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Slager CJ, Wentzel JJ, Schuurbiers JC et al. (2000) True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102:511–516

    CAS  PubMed  Google Scholar 

  • Sousa JE, Costa MA, Abizaid A et al. (2001) Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasound study. Circulation 103:192–195

    CAS  PubMed  Google Scholar 

  • Takagi A, Tsurumi Y, Ishii Y et al. (1999) Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100:250–255

    CAS  PubMed  Google Scholar 

  • van Egmond FC, Li W, Gussenhoven EJ et al. (1994) Catheter displacement sensing device. Thoraxcentre J (6):9–12

    Google Scholar 

  • von Birgelen C, Erbel R, Di Mario C et al. (1995a) Threedimensional reconstruction of coronary arteries with intravascular ultrasound. Herz 20:277–289

    Google Scholar 

  • von Birgelen C, Di Mario C, Prati F et al. (1995b) Intracoronary ultrasound: three-dimensional reconstruction techniques. In: de Feyter PJ, Di Mario C, Serruys PW (eds) Quantitative coronary imaging. Barjesteh, Meeuwse & Co., Rotterdam, pp 181–197

    Google Scholar 

  • von Birgelen C, van der Lugt A, Nicosia A et al. (1996) Computerized assessment of coronary lumen and atherosclerotic plaque dimensions in three-dimensional intravascular ultrasound correlated with histomorphometry. Am J Cardiol 78:1202–1209

    Article  Google Scholar 

  • von Birgelen C, de Vrey EA, Mintz GS et al. (1997a) ECGgated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation 96:2944–2952

    Google Scholar 

  • von Birgelen C, Mintz GS, Nicosia A et al. (1997b) Electrocardiogram-gated intravascular ultrasound image acquisition after coronary stent deployment facilitates on-line three-dimensional reconstruction and automated lumen quantification. J Am Coll Cardiol 30:436–443

    Article  Google Scholar 

  • von Birgelen C, Mintz GS, de Feyter PJ et al. (1997c) Reconstruction and quantification with three-dimensional intracoronary ultrasound. An update on techniques, challenges, and future directions. Eur Heart J 18:1056–1067

    Google Scholar 

  • von Birgelen C, de Feyter PJ, de Vrey EA et al. (1997d) Simpson’s rule for the volumetric ultrasound assessment of atherosclerotic coronary arteries: a study with ECG-gated three-dimensional intravascular ultrasound. Coron Artery Dis 8:363–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rees, M.R. et al. (2009). Invasive Coronary Imaging. In: Oudkerk, M., Reiser, M.F. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32984-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32984-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32983-1

  • Online ISBN: 978-3-540-32984-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics