Skip to main content

Advances in Anatomy Embryology and Cell Biology

  • Chapter
Book cover Innervation of the Mammalian Esophagus

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 185))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggestrup S, Uddman R, Jensen SL, Hakanson R, Sundler F, Schaffalitzky de Muckadell O, Emson P (1986) Regulatory peptides in lower esophageal sphincter of pig and man. Dig Dis Sci 31:1370–1375

    Article  PubMed  CAS  Google Scholar 

  • Aggestrup S, Uddman R, Jensen SL, Sundler F, Schaffalitzky de Muckadell O, Holst JJ, Hakanson R, Ekman R, Sorensen HR (1985) Regulatory peptides in the lower esophageal sphincter of man. Regul Pept 10:167–178

    Article  PubMed  CAS  Google Scholar 

  • Aggestrup S, Uddman R, Sundler F, Fahrenkrug J, Hakanson R, Sorensen HR, Hambraeus G (1983) Lack of vasoactive intestinal polypeptide nerves in esophageal achalasia. Gastroenterology 84:924–927

    PubMed  CAS  Google Scholar 

  • Aharinejad S, Firbas W (1989) Die Innervation des menschlichen Ösophagus. Acta Anat (Basel) 136:715–720

    CAS  Google Scholar 

  • Aldskogius H, Elfvin LG, Forsman CA (1986) Primary sensory afferents in the inferior mesenteric ganglion and related nerves of the guinea pig. An experimental study with anterogradely transported wheat germ agglutinin-horseradish peroxidase conjugate. J Auton Nerv Syst 15:179–190

    Article  PubMed  CAS  Google Scholar 

  • Ali GN, Laundl TM, Wallace KL, Shaw DW, Decarle DJ, Cook IJ (1994) Influence of mucosal receptors on deglutitive regulation of pharyngeal and upper esophageal sphincter function. Am J Physiol 267:G644–649

    PubMed  CAS  Google Scholar 

  • Allescher HD, Berezin I, Jury J, Daniel EE (1988) Characteristics of canine lower esophageal sphincter: a~new electrophysiological tool. Am J Physiol 255:G441–453

    PubMed  CAS  Google Scholar 

  • Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283:248–268

    Article  PubMed  CAS  Google Scholar 

  • Alvarez FJ, Villalba RM, Zerda R, Schneider SP (2004) Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 472:257–280

    Article  PubMed  CAS  Google Scholar 

  • Andrew BL (1956) The nervous control of the cervical oesophagus of the rat during swallowing. J Physiol 134:729–740

    PubMed  CAS  Google Scholar 

  • Andrew BL (1957) Activity in afferent nerve fibres from the cervical oesophagus. J Physiol 135:54–55P

    PubMed  CAS  Google Scholar 

  • Andrews PLR, Lang KM (1982) Vagal afferent discharge from mechanoreceptors in the lower oesophagus of the ferret. J Physiol 332:29P

    Google Scholar 

  • Anlauf M, Schäfer MK, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111

    Article  PubMed  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    Article  PubMed  CAS  Google Scholar 

  • Asaad K, Abd-El Rahman S, Nawar NN, Mikhail Y (1983) Intrinsic innervation of the oesophagus in dogs with special reference to the presence of muscle spindles. Acta Anat (Basel) 115:91–96

    CAS  Google Scholar 

  • Atkinson L, Batten TF, Corbett EK, Sinfield JK, Deuchars J (2003) Subcellular localization of neuronal nitric oxide synthase in the rat nucleus of the solitary tract in relation to vagal afferent inputs. Neuroscience 118:115–122

    Article  PubMed  CAS  Google Scholar 

  • Aziz Q, Andersson JL, Valind S, Sundin A, Hamdy S, Jones AK, Foster ER, Langstrom B, Thompson DG (1997) Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology 113:50–59

    Article  PubMed  CAS  Google Scholar 

  • Barrett RT, Bao X, Miselis RR, Altschuler SM (1994) Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 107:728–737

    PubMed  CAS  Google Scholar 

  • Barthélémy P, Sabeur G, Jammes Y (1996) Reflex relationships between the cervical esophagus and the respiratory system in cats. Neurosci Lett 217:81–84

    PubMed  Google Scholar 

  • Barthó L, Lenard L Jr, Patacchini R, Halmai V, Wilhelm M, Holzer P, Maggi CA (1999) Tachykinin receptors are involved in the “local efferent” motor response to capsaicin in the guinea-pig small intestine and oesophagus. Neuroscience 90:221–228

    Article  PubMed  Google Scholar 

  • Bartlet AL (1968) The effect of vagal stimulation and eserine on isolated guinea-pig oesophagus. Q J Exp Physiol Cogn Med Sci 53:170–174

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Lange W (1969) Adrenergic innervation of the oesophagus in the cat (Felis domestica) and Rhesus monkey (Macacus rhesus). Z Zellforsch Mikrosk Anat 95:529–545

    Article  PubMed  CAS  Google Scholar 

  • Behar J, Kerstein M, Biancani P (1982) Neural control of the lower esophageal sphincter in the cat: studies on the excitatory pathways to the lower esophageal sphincter. Gastroenterology 82:680–688

    PubMed  CAS  Google Scholar 

  • Berezin I, Daniel EE, Huizinga JD (1994) Ultrastructure of interstitial cells of Cajal in the canine distal esophagus. Can J Physiol Pharmacol 72:1049–1059

    PubMed  CAS  Google Scholar 

  • Berthoud HR (1995) Anatomical demonstration of vagal input to nicotinamide acetamide dinucleotide phosphate diaphorase-positive (nitrergic) neurons in rat fundic stomach. J Comp Neurol 358:428–439

    Article  PubMed  CAS  Google Scholar 

  • Berthoud HR, Carlson NR, Powley TL (1991) Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol 260:R200–207

    PubMed  CAS  Google Scholar 

  • Berthoud HR, Patterson LM, Neumann F, Neuhuber WL (1997a) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol (Berl) 195:183–191

    Article  CAS  Google Scholar 

  • Berthoud HR, Patterson LM, Willing AE, Mueller K, Neuhuber WL (1997b) Capsaicin-resistant vagal afferent fibers in the rat gastrointestinal tract: anatomical identification and functional integrity. Brain Res 746:195–206

    Article  PubMed  CAS  Google Scholar 

  • Berthoud HR, Powley TL (1992) Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 319:261–276

    Article  PubMed  CAS  Google Scholar 

  • Beyak MJ, Collman PI, Xue S, Valdez DT, Diamant NE (2003) Release of nitric oxide in the central nervous system mediates tonic and phasic contraction of the cat lower oesophageal sphincter. Neurogastroenterol Motil 15:401–407

    Article  PubMed  CAS  Google Scholar 

  • Beyer S, Wörl J, Neuhuber WL (1996) Nitrerge Co-Innervation von motorischen Endplatten im pharyngo-ösophagealen Übergang bei der Ratte. Ann Anat Suppl 178:344

    Google Scholar 

  • Bieger D (1993) The brainstem esophagomotor network pattern generator: a~rodent model. Dysphagia 8:203–208

    Article  PubMed  CAS  Google Scholar 

  • Bieger D (2001) Rhombencephalic pathways and neurotransmitters controlling deglutition. Am J Med 111 Suppl 8A:85S–89S

    Google Scholar 

  • Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562

    Article  PubMed  CAS  Google Scholar 

  • Bieger D, Triggle C (1985) Pharmacological properties of mechanical responses of the rat oesophageal muscularis mucosae to vagal and field stimulation. Br J Pharmacol 84:93–106

    PubMed  CAS  Google Scholar 

  • Blackshaw LA, Haupt JA, Omari T, Dent J (1997) Vagal and sympathetic influences on the ferret lower oesophageal sphincter. J Auton Nerv Syst 66:179–188

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw LA, Smid SD, O'Donnell TA, Dent J (2000) GABA(B) receptor-mediated effects on vagal pathways to the lower oesophageal sphincter and heart. Br J Pharmacol 130:279–288

    Article  PubMed  CAS  Google Scholar 

  • Bonington A, Mahon M, Whitmore I (1988) A~histological and histochemical study of the cricopharyngeus muscle in man. J Anat 156:27–37

    PubMed  CAS  Google Scholar 

  • Breuer C, Neuhuber WL, Wörl J (2004) Development of neuromuscular junctions in the mouse esophagus: morphology suggests a~role for enteric co-innervation during maturation of vagal myoneural contacts. J Comp Neurol 475:47–69

    Article  PubMed  Google Scholar 

  • Brok HA, Copper MP, Stroeve RJ, Ongerboer de Visser BW, Venker-van Haagen AJ, Schouwenburg PF (1999) Evidence for recurrent laryngeal nerve contribution in motor innervation of the human cricopharyngeal muscle. Laryngoscope 109:705–708

    Article  PubMed  CAS  Google Scholar 

  • Brookes SJ (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70

    Article  PubMed  CAS  Google Scholar 

  • Brookes SJH (1996) Characterization of excitatory and inhibitory motor neurons to the guinea pig lower esophageal sphincter. Gastroenterology 111:108–117

    Article  PubMed  CAS  Google Scholar 

  • Broussard DL, Altschuler SM (2000a) Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med 108(Suppl 4a):79S–86S

    Article  PubMed  Google Scholar 

  • Broussard DL, Altschuler SM (2000b) Central integration of swallow and airway-protective reflexes. Am J Med 108(Suppl 4a):62S–67S

    Article  PubMed  Google Scholar 

  • Broussard DL, Lynn RB, Wiedner EB, Altschuler SM (1998) Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology 114:1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345:346–347

    Article  PubMed  CAS  Google Scholar 

  • Cange L, Johnsson E, Rydholm H, Lehmann A, Finizia C, Lundell L, Ruth M (2002) Baclofen-mediated gastro-oesophageal acid reflux control in patients with established reflux disease. Aliment Pharmacol Ther 16:869–873

    Article  PubMed  CAS  Google Scholar 

  • Castell DO, Murray JA, Tutuian R, Orlando RC, Arnold R (2004) Review article: the pathophysiology of gastro-oesophageal reflux disease—oesophageal manifestations. Aliment Pharmacol Ther 20 Suppl 9:14–25

    Article  Google Scholar 

  • Castelucci P, Robbins HL, Furness JB (2003) P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res 312:167–174

    PubMed  CAS  Google Scholar 

  • Cecio A (1976) Further histophysiological observations on the lower esophagus of the rabbit. Cell Tissue Res 168:475–488

    Article  PubMed  CAS  Google Scholar 

  • Cecio A, Califano G (1967) Neurohistological observations on the oesophageal innervation of rabbit. Z Zellforsch Mikrosk Anat 83:30–39

    Article  PubMed  CAS  Google Scholar 

  • Cervero F, Connell LA (1984) Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol 230:88–98

    Article  PubMed  CAS  Google Scholar 

  • Chandler MJ, Hobbs SF, Bolser DC, Foreman RD (1991) Effects of vagal afferent stimulation on cervical spinothalamic tract neurons in monkeys. Pain 44:81–87

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Mashimo H, Goyal RK (2003) Musings on the wanderer: what's new in our understanding of vago-vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284:G357–366

    PubMed  CAS  Google Scholar 

  • Christensen J, Fang S, Rick GA (1995) NADPH-diaphorase-positive nerve fibers in smooth muscle layers of opossum esophagus: gradients in density. J Auton Nerv Syst 52:99–105

    Article  PubMed  CAS  Google Scholar 

  • Christensen J, Rick GA, Robison BA, Stiles MJ, Wix MA (1983) Arrangement of the myenteric plexus throughout the gastrointestinal tract of the opossum. Gastroenterology 85:890–899

    PubMed  CAS  Google Scholar 

  • Christensen J, Rick GA, Soll DJ (1987) Intramural nerves and interstitial cells revealed by the Champy-Maillet stain in the opossum esophagus. J Auton Nerv Syst 19:137–151

    Article  PubMed  CAS  Google Scholar 

  • Christensen J, Robison BA (1982) Anatomy of the myenteric plexus of the opossum esophagus. Gastroenterology 83:1033–1042

    PubMed  CAS  Google Scholar 

  • Clarke GD, Davison JS (1975) Tension receptors in the oesophagus and stomach of the rat. J Physiol 244:41P–42P

    PubMed  CAS  Google Scholar 

  • Clerc N (1983a) Afferent innervation of the lower oesophageal sphincter of the cat. An HRP study. J Auton Nerv Syst 9:623–636

    Article  PubMed  CAS  Google Scholar 

  • Clerc N (1983b) Histological characteristics of the lower oesophageal sphincter in the cat. Acta Anat (Basel) 117:201–208

    CAS  Google Scholar 

  • Clerc N (1984) Afferent innervation of the lower esophageal sphincter of the cat. Pathways and functional characteristics. J Auton Nerv Syst 10:213–216

    Article  PubMed  CAS  Google Scholar 

  • Clerc N, Condamin M (1987) Selective labeling of vagal sensory nerve fibers in the lower esophageal sphincter with anterogradely transported WGA-HRP. Brain Res 424:216–224

    Article  PubMed  CAS  Google Scholar 

  • Clerc N, Mazzia C (1994) Morphological relationships of choleragenoid horseradish peroxidase-labeled spinal primary afferents with myenteric ganglia and mucosal associated lymphoid tissue in the cat esophagogastric junction. J Comp Neurol 347:171–186

    Article  PubMed  CAS  Google Scholar 

  • Clerc N, Mei N (1983a) Thoracic esophageal mechanoreceptors connected with fibers following sympathetic pathways. Brain Res Bull 10:1–7

    Article  PubMed  CAS  Google Scholar 

  • Clerc N, Mei N (1983b) Vagal mechanoreceptors located in the lower oesophageal sphincter of the cat. J Physiol 336:487–498

    PubMed  CAS  Google Scholar 

  • Clouse RE, Richter JE, Heading RC, Janssens J, Wilson JA (1999) Functional esophageal disorders. Gut 45(Suppl II):II31–II36

    Google Scholar 

  • Collman PI, Tremblay L, Diamant NE (1992) The distribution of spinal and vagal sensory neurons that innervate the esophagus of the cat. Gastroenterology 103:817–822

    PubMed  CAS  Google Scholar 

  • Collman PI, Tremblay L, Diamant NE (1993) The central vagal efferent supply to the esophagus and lower esophageal sphincter of the cat. Gastroenterology 104:1430–1438

    PubMed  CAS  Google Scholar 

  • Conklin JL, Christensen J (1994) Motor function of the pharynx and esophagus. In: Johnson LR (eds) Physiology of the gastrointestinal tract. Raven Press, New York, 903–928

    Google Scholar 

  • Costa M, Brookes SH, Zagorodnyuk V (2004) How many kinds of visceral afferents? Gut 53 Suppl 2:ii1–4

    Google Scholar 

  • Costa M, Furness JB, Pompolo S, Brookes SJ, Bornstein JC, Bredt DS, Snyder SH (1992) Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci Lett 148:121–125

    Article  PubMed  CAS  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1989) A~circumscribed projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat: anatomical evidence for somatostatin-28-immunoreactive interneurons subserving reflex control of esophageal motility. J Neurosci 9:1668–1682

    PubMed  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1990) Central neural control of esophageal motility: a~review. Dysphagia 5:35–51

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A, Neuhuber WL, Forsgren S (1994) Innervation of laryngeal nerve paraganglia: an anterograde tracing and immunohistochemical study in the rat. J Comp Neurol 345:440–446

    Article  PubMed  CAS  Google Scholar 

  • Daniel EE, Posey-Daniel V (1984) Neuromuscular structures in opossum esophagus: role of interstitial cells of Cajal. Am J Physiol 246:G305–315

    PubMed  CAS  Google Scholar 

  • Danzer M, Samberger C, Schicho R, Lippe IT, Holzer P (2004) Immunocytochemical characterization of rat brainstem neurons with vagal afferent input from the stomach challenged by acid or ammonia. Eur J Neurosci 19:85–92

    Article  PubMed  Google Scholar 

  • De Laet A, Cornelissen W, Adriaensen D, Van Bogaert PP, Scheuermann DW, Timmermans JP (2002) Ca2+ involvement in the action potential generation of myenteric neurones in the rat oesophagus. Neurogastroenterol Motil 14:161–172

    Article  PubMed  Google Scholar 

  • Delbro D (1985) The role of substance P in the control of gut motility. In: Hakanson R, Sundler F (eds) Tachykinin Antagonists. Elsevier, Amsterdam, 223–230

    Google Scholar 

  • Dinh QT, Groneberg DA, Peiser C, Springer J, Joachim RA, Arck PC, Klapp BF, Fischer A (2004) Nerve growth factor-induced substance P in capsaicin-insensitive vagal neurons innervating the lower mouse airway. Clin Exp Allergy 34:1474–1479

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Loomis CW, Bieger D (2000) Distal and deglutitive inhibition in the rat esophagus: role of inhibitory neurotransmission in the nucleus tractus solitarii. Gastroenterology 118:328–336

    Article  PubMed  CAS  Google Scholar 

  • Duc C, Barakat-Walter I, Droz B (1994) Innervation of putative rapidly adapting mechanoreceptors by calbindin- and calretinin-immunoreactive primary sensory neurons in the rat. Eur J Neurosci 6:264–271

    Article  PubMed  CAS  Google Scholar 

  • von Düring M, Andres KH (1990) Topography and ultrastructure of group III and IV nerve terminals of the cat's gastrocnemius-soleus muscle. In: Zenker W, Neuhuber WL (eds) The primary afferent neuron. Plenum Press, New York, 35–41

    Google Scholar 

  • Dütsch M, Eichhorn U, Worl J, Wank M, Berthoud HR, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a~combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398:289–307

    Article  PubMed  Google Scholar 

  • Eiden LE (1998) The cholinergic gene locus. J Neurochem 70:2227–2240

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512

    Article  PubMed  CAS  Google Scholar 

  • Euchner-Wamser I, Sengupta JN, Gebhart GF, Meller ST (1993) Characterization of responses of T2-T4 spinal cord neurons to esophageal distension in the rat. J Neurophysiol 69:868–883

    PubMed  CAS  Google Scholar 

  • Falempin M, Madhloum A, Rousseau JP (1986) Effects of vagal deafferentation on oesophageal motility and transit in the sheep. J Physiol 372:425–436

    PubMed  CAS  Google Scholar 

  • Fang S, Christensen J (1994) Distribution of NADPH diaphorase in intramural plexuses of cat and opossum esophagus. J Auton Nerv Syst 46:123–133

    Article  PubMed  CAS  Google Scholar 

  • Faussone-Pellegrini MS, Cortesini C (1985) Ultrastructural features and localization of the interstitial cells of Cajal in the smooth muscle coat of human esophagus. J Submicrosc Cytol 17:187–197

    PubMed  CAS  Google Scholar 

  • Fidone SJ, Stensaas LJ, Zapata P (1975) Sensory nerve endings containing “synaptic” vesicles: an electron-microscope autoradiographic study. J Neurobiol 6:423–427

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Canning BJ, Undem BJ, Kummer W (1998) Evidence for an esophageal origin of VIP-IR and NO synthase-IR nerves innervating the guinea pig trachealis: a~retrograde neuronal tracing and immunohistochemical analysis. J Comp Neurol 394:326–334

    Article  PubMed  CAS  Google Scholar 

  • Fox EA, Phillips RJ, Baronowsky EA, Byerly MS, Jones S, Powley TL (2001a) Neurotrophin-4 deficient mice have a~loss of vagal intraganglionic mechanoreceptors from the small intestine and a~disruption of short-term satiety. J Neurosci 21:8602–8615

    PubMed  CAS  Google Scholar 

  • Fox EA, Phillips RJ, Byerly MS, Baronowsky EA, Chi MM, Powley TL (2002) Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Anat Embryol 205:325–342

    Article  PubMed  Google Scholar 

  • Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2000) Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J Comp Neurol 428:558–576

    Article  PubMed  CAS  Google Scholar 

  • Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2001b) C-Kit mutant mice have a~selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat Embryol 204:11–26

    Article  PubMed  CAS  Google Scholar 

  • Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circulation Res 93:96–105

    Article  PubMed  CAS  Google Scholar 

  • Fryscak T, Zenker W, Kantner D (1984) Afferent and efferent innervation of the rat esophagus. A~tracing study with horseradish peroxidase and nuclear yellow. Anat Embryol 170:63–70

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama F, Furuta T (2001) Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol 435:379–387

    Article  PubMed  CAS  Google Scholar 

  • Fukushima S, Shingai T, Kitagawa J, Takahashi Y, Taguchi Y, Noda T, Yamada Y (2003) Role of the pharyngeal branch of the vagus nerve in laryngeal elevation and UES pressure during swallowing in rabbits. Dysphagia 18:58–63

    Article  PubMed  Google Scholar 

  • Furlong PL, Aziz Q, Singh KD, Thompson DG, Hobson A, Harding GF (1998) Cortical localisation of magnetic fields evoked by oesophageal distension. Electroencephalogr Clin Neurophysiol 108:234–243

    Article  PubMed  CAS  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1987) The Enteric Nervous System. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Gabella G (1990) On the plasticity of form and structure of enteric ganglia. J Auton Nerv Syst 30(Suppl):S59–66

    Article  PubMed  Google Scholar 

  • Gabella G, Trigg P (1984) Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 13:49–71

    Article  PubMed  CAS  Google Scholar 

  • Gai WP, Messenger JP, Yu YH, Gieroba ZJ, Blessing WW (1995) Nitric oxide-synthesising neurons in the central subnucleus of the nucleus tractus solitarius provide a~major innervation of the rostral nucleus ambiguus in the rabbit. J Comp Neurol 357:348–361

    Article  PubMed  CAS  Google Scholar 

  • Gibson A, Mirzazadeh S, Hobbs AJ, Moore PK (1990) L-NG-monomethyl arginine and L-NG-nitro arginine inhibit non-adrenergic, non-cholinergic relaxation of the mouse anococcygeus muscle. Br J Pharmacol 99:602–606

    PubMed  CAS  Google Scholar 

  • Gilbert RJ, Dodds WJ (1987) Subtypes of muscarinic receptors in vagal inhibitory pathway to the lower esophageal sphincter of the opossum. Dig Dis Sci 32:1130–1135

    Article  PubMed  CAS  Google Scholar 

  • Gonella J, Niel JP, Roman C (1977) Vagal control of lower oesophageal sphincter motility in the cat. J Physiol 273:647–664

    PubMed  CAS  Google Scholar 

  • Gonella J, Niel JP, Roman C (1979) Sympathetic control of lower oesophageal sphincter motility in the cat. J Physiol 287:177–190

    PubMed  CAS  Google Scholar 

  • Gonella J, Niel JP, Roman C (1980) Mechanism of the noradrenergic motor control on the lower oesophageal sphincter in the cat. J Physiol 306:251–260

    PubMed  CAS  Google Scholar 

  • Goyal RK, Padmanabhan R, Sang Q (2001) Neural circuits in swallowing and abdominal vagal afferent-mediated lower esophageal sphincter relaxation. Am J Med 111 Suppl 8A:95S–105S

    Google Scholar 

  • Green T, Dockray GJ (1987) Calcitonin gene-related peptide and substance P in afferents to the upper gastrointestinal tract in the rat. Neurosci Lett 76:151–156

    Article  PubMed  CAS  Google Scholar 

  • Greving R (1931) Über die motorische und sensible Innervation der Speiseröhre, zugleich ein Beitrag zum Regulationsmechanismus des peripherischen vegetativen Nervensystems. Dtsch Arch klin Med 171:10–26

    Google Scholar 

  • Grozdanovic Z, Baumgarten HG, Brüning G (1992) Histochemistry of NADPH-diaphorase, a~marker for neuronal nitric oxide synthase, in the peripheral autonomic nervous system of the mouse. Neuroscience 48:225–235

    Article  PubMed  CAS  Google Scholar 

  • Gruber H (1968) Über die Struktur und Innervation der quergestreiften Muskulatur des Ösophagus der Ratte. Z Zellforsch 91:236–247

    Article  PubMed  CAS  Google Scholar 

  • Gruber H (1978) Motor innervation of the striated oesophagus muscle. Part 1. Intramural distribution of the right and left vagus nerve in the rat esophagus as revealed by the glycogen depletion technique. J Neurol Sci 36:41–53

    Article  PubMed  CAS  Google Scholar 

  • Grundy D (1988) Speculations on the structure/function relationship for vagal and splanchnic afferent endings supplying the gastrointestinal tract. J Auton Nerv Syst 22:175–180

    Article  PubMed  CAS  Google Scholar 

  • Halata Z (1975) The mechanoreceptors of the mammalian skin ultrastructure and morphological classification. Adv Anat Embryol Cell Biol 50:3–77

    PubMed  CAS  Google Scholar 

  • Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow J, Hughes DG, Tallis RC, Thompson DG (1996) The cortical topography of human swallowing musculature in health and disease. Nat Med 2:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Hamilton RB, Norgren R (1984) Central projections of gustatory nerves in the rat. J Comp Neurol 222:560–577

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Takanaga A, Tanaka K, Maeda S, Seki M (2003) Ultrastructure of the central subnucleus of the nucleus tractus solitarii and the esophageal afferent terminals in the rat. Anat Embryol 206:273–281

    PubMed  Google Scholar 

  • Hayakawa T, Yajima Y, Zyo K (1996) Ultrastructural characterization of pharyngeal and esophageal motoneurons in the nucleus ambiguus of the rat. J Comp Neurol 370:135–146

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Zheng JQ, Yajima Y (1997) Direct synaptic projections to esophageal motoneurons in the nucleus ambiguus from the nucleus of the solitary tract of the rat. J Comp Neurol 381:18–30

    Article  PubMed  CAS  Google Scholar 

  • Hebeiss K, Kilbinger H (1999) Cholinergic and GABAergic regulation of nitric oxide synthesis in the guinea pig ileum. Am J Physiol 276:G862–866

    PubMed  CAS  Google Scholar 

  • Hecht M, Kober H, Claus D, Hilz M, Vieth J, Neundorfer B (1999) The electrical and magnetical cerebral responses evoked by electrical stimulation of the esophagus and the location of their cerebral sources. Clin Neurophysiol 110:1435–1444

    Article  PubMed  CAS  Google Scholar 

  • Hisa Y, Tadaki N, Uno T, Koike S, Tanaka M, Okamura H, Ibata Y (1996) Nitrergic innervation of the rat larynx measured by nitric oxide synthase immunohistochemistry and NADPH-diaphorase histochemistry. Ann Oto Rhinol Laryngol 105:550–554

    CAS  Google Scholar 

  • Hobson AR, Khan RW, Sarkar S, Furlong PL, Aziz Q (2004) Development of esophageal hypersensitivity following experimental duodenal acidification. Am J Gastroenterol 99:813–820

    Article  PubMed  Google Scholar 

  • Holland CT, Satchell PM, Farrow BR (2002) Selective vagal afferent dysfunction in dogs with congenital idiopathic megaoesophagus. Auton Neurosci 99:18–23

    Article  PubMed  Google Scholar 

  • Holloway RH, Dodds WJ, Helm JF, Hogan WJ, Dent J, Arndorfer RC (1986) Integrity of cholinergic innervation to the lower esophageal sphincter in achalasia. Gastroenterology 90:924–929

    PubMed  CAS  Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    Article  PubMed  CAS  Google Scholar 

  • Holzer P (2003) Acid-sensitive ion channels in gastrointestinal function. Curr Opin Pharmacol 3:618–625

    Article  PubMed  CAS  Google Scholar 

  • Holzer P (2004) TRPV1 and the gut: from a~tasty receptor for a~painful vanilloid to a~key player in hyperalgesia. Eur J Pharmacol 500:231–241

    Article  PubMed  CAS  Google Scholar 

  • Holzer P, Danzer M, Schicho R, Samberger C, Painsipp E, Lippe IT (2004) Vagal afferent input from the acid-challenged rat stomach to the brainstem: enhancement by interleukin-1beta. Neuroscience 129:439–445

    Article  PubMed  CAS  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997a) Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 73:173–217

    Article  PubMed  CAS  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997b) Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73:219–263

    Article  PubMed  CAS  Google Scholar 

  • Holzer P, Schluet W, Lippe IT, Sametz W (1987) Involvement of capsaicin-sensitive sensory neurons in gastrointestinal function. Acta Physiol Hung 69:403–411

    PubMed  CAS  Google Scholar 

  • Hopkins DA (1995) Ultrastructure and synaptology of the nucleus ambiguus in the rat: the compact formation. J Comp Neurol 360:705–725

    Article  PubMed  CAS  Google Scholar 

  • Hornby PJ, Abrahams TP (2000) Central control of lower esophageal sphincter relaxation. Am J Med 108(Suppl 4a):90S–98S

    Article  PubMed  Google Scholar 

  • Hudson LC, Cummings JF (1985) The origins of innervation of the esophagus of the dog. Brain Res 326:125–136

    Article  PubMed  CAS  Google Scholar 

  • Hummel T, Barz S, Holscher T, Neuhuber WL (2003) Differences in responses to nociceptive stimulation of the oral and aboral oesophagus. J Clin Neurosci 10:223–225

    Article  PubMed  Google Scholar 

  • Hummel T, Sengupta JN, Meller ST, Gebhart GF (1997) Responses of T2–4 spinal cord neurons to irritation of the lower airways in the rat. Am J Physiol 273:R1147–1157

    PubMed  CAS  Google Scholar 

  • Hyland NP, Abrahams TP, Fuchs K, Burmeister MA, Hornby PJ (2001) Organization and neurochemistry of vagal preganglionic neurons innervating the lower esophageal sphincter in ferrets. J Comp Neurol 430:222–234

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Jacobowitz DM, Sugimoto T (1997) Coexpression of calretinin and parvalbumin in Ruffini-like endings in the rat incisor periodontal ligament. Brain Res 770:294–297

    Article  PubMed  CAS  Google Scholar 

  • Iggo A (1957) Gastro-intestinal tension receptors with unmyelinated afferent fibres in the vagus of the cat. Q J Exp Physiol Cogn Med Sci 42:130–143

    PubMed  CAS  Google Scholar 

  • Iggo A, Andres KH (1982) Morphology of cutaneous receptors. Annu Rev Neurosci 5:1–31

    Article  PubMed  CAS  Google Scholar 

  • Iino S, Kato M, Hidaka H, Kobayashi S (1998) Neurocalcin-like immunoreactivity in the rat esophageal nervous system. Cell Tissue Res 294:57–68

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Konishi A, Nomura S, Mizuno N, Nakamura Y, Sugimoto T (1979) Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: cobalt-glucose oxidase method. Brain Res 175:341–346

    Article  PubMed  CAS  Google Scholar 

  • Izumi N, Matsuyama H, Ko M, Shimizu Y, Takewaki T (2003) Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus. J Physiol 551:287–294

    Article  PubMed  CAS  Google Scholar 

  • Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81:929–969

    PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218

    PubMed  CAS  Google Scholar 

  • Jit I (1974) Development of striated muscle fibres in the human oesophagus. Indian J Med Res 62:838–844

    PubMed  CAS  Google Scholar 

  • Jou CJ, Farber JP, Qin C, Foreman RD (2002) Convergent pathways for cardiac- and esophageal-somatic motor reflexes in rats. Auton Neurosci 99:70–77

    Article  PubMed  Google Scholar 

  • Jurica EJ (1926) Studies on the motility of the denervated mammalian esophagus. Am J Physiol 77:371–384

    Google Scholar 

  • Kalia M, Mesulam MM (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol 193:435–465

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    Article  PubMed  CAS  Google Scholar 

  • Kannari K (1990) Sensory receptors in the periodontal ligament of hamster incisors with special reference to the distribution, ultrastructure and three-dimensional reconstruction of Ruffini endings. Arch Histol Cytol 53:559–573

    PubMed  CAS  Google Scholar 

  • Kannari K, Sato O, Maeda T, Iwanaga T, Fujita T (1991) A~possible mechanism of mechanoreception in Ruffini endings in the periodontal ligament of hamster incisors. J Comp Neurol 313:368–376

    Article  PubMed  CAS  Google Scholar 

  • Kantrowitz PA, Siegel CI, Strong MJ, Hendrix TR (1970) Response of the human oesophagus to d-tubocurarine and atropine. Gut 11:47–50

    PubMed  CAS  Google Scholar 

  • Kaufmann P, Lierse W, Stark J, Stelzner F (1968) Die Muskelanordnung in der Speiseröhre. Erg Anat Entw-Gesch 40:5–34

    Google Scholar 

  • Keast JR, Stephensen TM (2000) Glutamate and aspartate immunoreactivity in dorsal root ganglion cells supplying visceral and somatic targets and evidence for peripheral axonal transport. J Comp Neurol 424:577–587

    Article  PubMed  CAS  Google Scholar 

  • Khurana RK, Petras JM (1991) Sensory innervation of the canine esophagus, stomach, and duodenum. Am J Anat 192:293–306

    Article  PubMed  CAS  Google Scholar 

  • Kobler JB, Datta S, Goyal RK, Benecchi EJ (1994) Innervation of the larynx, pharynx, and upper esophageal sphincter of the rat. J Comp Neurol 349:129–147

    Article  PubMed  CAS  Google Scholar 

  • Koesling D, Russwurm M, Mergia E, Mullershausen F, Friebe A (2004) Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int 45:813–819

    Article  PubMed  CAS  Google Scholar 

  • Kolossow NG, Milochin AA (1963) Die afferente Innervation der Ganglien des vegetativen Nervensystems. Z Mikrosk-Anat Forsch 70:426–464

    PubMed  CAS  Google Scholar 

  • Kraus T, Neuhuber WL, Raab M (2004) Vesicular glutamate transporter 1 immunoreactivity in motor endplates of striated esophageal but not skeletal muscles in the mouse. Neurosci Lett 360:53–56

    Article  PubMed  CAS  Google Scholar 

  • Kressel M (1998) Tyramide amplification allows anterograde tracing by horseradish peroxidase-conjugated lectins in conjunction with simultaneous immunohistochemistry. J Histochem Cytochem 46:527–533

    PubMed  CAS  Google Scholar 

  • Kressel M, Berthoud HR, Neuhuber WL (1994) Vagal innervation of the rat pylorus: an anterograde tracing study using carbocyanine dyes and laser scanning confocal microscopy. Cell Tissue Res 275:109–123

    Article  PubMed  CAS  Google Scholar 

  • Kressel M, Radespiel-Tröger M (1999) Anterograde tracing and immunohistochemical characterization of potentially mechanosensitive vagal afferents in the esophagus. J Comp Neurol 412:161–172

    Article  PubMed  CAS  Google Scholar 

  • Kucera J, Fan G, Jaenisch R, Linnarsson S, Ernfors P (1995) Dependence of developing group Ia afferents on neurotrophin-3. J Comp Neurol 363:307–320

    Article  PubMed  CAS  Google Scholar 

  • Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a~focus on guanylyl cyclase-A. Circulation Res 93:700–709

    Article  PubMed  CAS  Google Scholar 

  • Kummer W, Fischer A, Kurkowski R, Heym C (1992) The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:715–737

    Article  PubMed  CAS  Google Scholar 

  • Kummer W, Neuhuber WL (1989) Vagal paraganglia of the rat. J Electron Microsc Tech 12:343–355

    Article  PubMed  CAS  Google Scholar 

  • Kuo DC, Oravitz JJ, DeGroat WC (1984) Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res 321:111–118

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto H, Brookes SJ (2000) Cholinergic and nitrergic innervation of the rat esophagus. In: Krammer HJ, Singer MV (eds) Neurogastroenterology From the Basics to the Clinics. Kluwer Academic Publishers, Dordrecht, 78–82

    Google Scholar 

  • Kuramoto H, Kuwano R (1994) Immunohistochemical demonstration of calbindin-containing nerve endings in the rat esophagus. Cell Tissue Res 278:57–64

    PubMed  CAS  Google Scholar 

  • Kuramoto H, Kuwano R (1995) Location of sensory nerve cells that provide calbindin-containing laminar nerve endings in myenteric ganglia of the rat esophagus. J~Auton Nerv Syst 54:126–136

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto H, Oomori Y, Murabayashi H, Kadowaki M, Karaki S, Kuwahara A (2004) Localization of neurokinin 1 receptor (NK1R) immunoreactivity in rat esophagus. J Comp Neurol 478:11–21

    Article  PubMed  CAS  Google Scholar 

  • Lamb K, Kang YM, Gebhart GF, Bielefeldt K (2003) Gastric inflammation triggers hypersensitivity to acid in awake rats. Gastroenterology 125:1410–1418

    Article  PubMed  Google Scholar 

  • Lang IM, Dana N, Medda BK, Shaker R (2002) Mechanisms of airway protection during retching, vomiting, and swallowing. Am J Physiol Gastrointest Liver Physiol 283:G529–536

    PubMed  CAS  Google Scholar 

  • Lang IM, Dean C, Medda BK, Aslam M, Shaker R (2004) Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res 1014:145–163

    Article  PubMed  CAS  Google Scholar 

  • Lang IM, Medda BK, Shaker R (2001) Mechanisms of reflexes induced by esophageal distension. Am J Physiol Gastrointest Liver Physiol 281:G1246–1263

    PubMed  CAS  Google Scholar 

  • Lang IM, Shaker R (2000) An overview of the upper esophageal sphincter. Curr Gastroenterol Reports 2:185–190

    Article  CAS  Google Scholar 

  • Langley JN (1921) The autonomic nervous system. Heffner & Sons, Cambridge

    Google Scholar 

  • Lanzafame AA, Christopoulos A, Mitchelson F (2003) Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptor and Channel 9:241–260

    Article  CAS  Google Scholar 

  • Lawrentjew BI (1929) Experimentell-morphologische Studien über den feineren Bau des Autonomen Nervensystems. II. Über den Aufbau der Ganglien der Speiseröhre nebst einigen Bemerkungen über das Vorkommen und die Verteilung zweier Arten von Nervenzellen in dem autonomen Nervensystem. Z~Mikrosk-Anat Forsch 18:233–267

    Google Scholar 

  • Leander S, Brodin E, Hakanson R, Sundler F, Uddman R (1982) Neuronal substance P in the esophagus. Distribution and effects on motor activity. Acta Physiol Scand 115:427–435

    PubMed  CAS  Google Scholar 

  • Leek BF (1972) Abdominal visceral receptors. In: Neil E (eds) Handbook of Sensory Physiology, Vol 3. Springer, Berlin, 113–160

    Google Scholar 

  • Lewis DI (1994) Dye-coupling between vagal motoneurones within the compact region of the adult rat nucleus ambiguus, in-vitro. J Auton Nerv Syst 47:53–58

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Furness JB (1998) Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res 294:35–43

    Article  PubMed  CAS  Google Scholar 

  • Liebermann-Meffert D, Allgower M, Schmid P, Blum AL (1979) Muscular equivalent of the lower esophageal sphincter. Gastroenterology 76:31–38

    PubMed  CAS  Google Scholar 

  • Lindh B, Aldskogius H, Hokfelt T (1989) Simultaneous immunohistochemical demonstration of intra-axonally transported markers and neuropeptides in the peripheral nervous system of the guinea pig. Histochemistry 92:367–376

    Article  PubMed  CAS  Google Scholar 

  • Liposits Z, Gorcs T, Gallyas F, Kosaras B, Setalo G (1982) Improvement of the electron microscopic detection of peroxidase activity by means of the silver intensification of the diaminobenzidine reaction in the rat nervous system. Neurosci Lett 31:7–11

    Article  PubMed  CAS  Google Scholar 

  • Longstreth GF, Walker FD (1994) Megaesophagus and hereditary nervous system degeneration. J Clin Gastroenterol 19:125–127

    Article  PubMed  CAS  Google Scholar 

  • Loomis CW, Yao D, Bieger D (1997) Characterization of an esophagocardiovascular reflex in the rat. Am J Physiol 272:R1783–1791

    PubMed  CAS  Google Scholar 

  • Loose R, Schnitzler A, Sarkar S, Schmitz F, Volkmann J, Frieling T, Freund HJ, Witte OW, Enck P (1999) Cortical activation during oesophageal stimulation: a~neuromagnetic study. Neurogastroenterol Mot 11:163–171

    Article  CAS  Google Scholar 

  • Lynn PA, Olsson C, Zagorodnyuk V, Costa M, Brookes SJ (2003) Rectal intraganglionic laminar endings are transduction sites of extrinsic mechanoreceptors in the guinea pig rectum. Gastroenterology 125:786–794

    Article  PubMed  Google Scholar 

  • Lynn P, Zagorodnyuk V, Hennig G, Costa M, Brookes SJ (2005) Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J Physiol 564:589–601

    Article  PubMed  CAS  Google Scholar 

  • Matthews PJ, Aziz Q, Facer P, Davis JB, Thompson DG, Anand P (2004) Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur J Gastroenterol Hepatol 16:897–902

    Article  PubMed  CAS  Google Scholar 

  • Mazzia C, Clerc N (1997) Ultrastructural relationships of spinal primary afferent fibers with neuronal and non-neuronal cells in the myenteric plexus of the cat esophago-gastric junction. Neuroscience 80:925–937

    Article  PubMed  CAS  Google Scholar 

  • Mazzia C, Clerc N (2000) Ultrastructural analysis of spinal primary afferent fibers within the circular muscle of the cat lower esophageal sphincter. Histochem Cell Biol 113:235–239

    Article  PubMed  CAS  Google Scholar 

  • Mearin F, Mourelle M, Guarner F, Salas A, Riveros-Moreno V, Moncada S, Malagelada JR (1993) Patients with achalasia lack nitric oxide synthase in the gastro-oesophageal junction. Eur J Clin Invest 23:724–728

    PubMed  CAS  Google Scholar 

  • Medda BK, Kern M, Ren J, Xie P, Ulualp SO, Lang IM, Shaker R (2003) Relative contribution of various airway protective mechanisms to prevention of aspiration during swallowing. Am J Physiol Gastrointest Liver Physiol 284:G933–939

    PubMed  CAS  Google Scholar 

  • Mei N (1983) Recent studies on intestinal vagal afferent innervation. Functional implications. J Auton Nerv Syst 9:199–206

    Article  PubMed  CAS  Google Scholar 

  • Melander T, Hokfelt T, Rokaeus A, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of several mammalian species. Cell Tissue Res 239:253–270

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ (1986) Neurophysiological basis of swallowing. Dysphagia 1:91–100

    Article  Google Scholar 

  • Minic J, Molgo J, Karlsson E, Krejci E (2002) Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur J Neurosci 15:439–448

    Article  PubMed  Google Scholar 

  • Mittal RK, Holloway RH, Penagini R, Blackshaw LA, Dent J (1995) Transient lower esophageal sphincter relaxation. Gastroenterology 109:601–610

    Article  PubMed  CAS  Google Scholar 

  • Morgan C, deGroat WC, Nadelhaft I (1986) The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. J Comp Neurol 243:23–40

    Article  PubMed  CAS  Google Scholar 

  • Morikawa S, Komuro T (1998) Distribution of myenteric NO neurons along the guinea-pig esophagus. J Auton Nerv Syst 74:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mu L, Sanders I (1996) The innervation of the human upper esophageal sphincter. Dysphagia 11:234–238

    Article  PubMed  CAS  Google Scholar 

  • Müller LR (1924) Die Lebensnerven. 2. Aufl. Springer, Berlin

    Google Scholar 

  • Munger BL, Yoshida Y, Hayashi S, Osawa T, Ide C (1988) A~re-evaluation of the cytology of cat Pacinian corpuscles. I. The inner core and clefts. Cell Tissue Res 253:83–93

    Article  PubMed  CAS  Google Scholar 

  • Nagai K, Noguchi T, Hashimoto T, Uchida Y, Shimada T (2003) The organization of the lamina muscularis mucosae in the human esophagus. Arch Histol Cytol 66:281–288

    Article  PubMed  Google Scholar 

  • Nance DM, Burns J, Klein CM, Burden HW (1988) Afferent fibers in the reproductive system and pelvic viscera of female rats: anterograde tracing and immunocytochemical studies. Brain Res Bull 21:701–709

    Article  PubMed  CAS  Google Scholar 

  • Nazruddin, Suemune S, Shirana Y, Yamauchi K, Shigenaga Y (1989) The cells of origin of the hypoglossal afferent nerves and central projections in the cat. Brain Res 490:219–235

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber W (1982) The central projections of visceral primary afferent neurons of the inferior mesenteric plexus and hypogastric nerve and the location of the related sensory and preganglionic sympathetic cell bodies in the rat. Anat Embryol 164:413–425

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber WL (1987) Sensory vagal innervation of the rat esophagus and cardia: a~light and electron microscopic anterograde tracing study. J Auton Nerv Syst 20:243–255

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber WL, Clerc N (1990) Afferent innervation of the esophagus in cat and rat. In: Zenker W, Neuhuber WL (eds) The primary afferent neuron. Plenum Press, New York, 93–107

    Google Scholar 

  • Neuhuber WL, Eichhorn U, Wörl J (2001) Enteric co-innervation of striated muscle fibers in the esophagus: just a “hangover”? Anat Rec 262:41–46

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber WL, Fryscak-Benes A (1987) Die zentralen Projektionen afferenter Neurone des Nervus hypoglossus bei der Albinoratte. Verh Anat Ges 81:981–983

    Google Scholar 

  • Neuhuber WL, Kressel M, Stark A, Berthoud HR (1998) Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. J Auton Nerv Syst 70:92–102

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber WL, Sandoz PA, Fryscak T (1986) The central projections of primary afferent neurons of greater splanchnic and intercostal nerves in the rat. A~horseradish peroxidase study. Anat Embryol 174:123–144

    Article  PubMed  CAS  Google Scholar 

  • Neuhuber WL, Wörl J, Berthoud HR, Conte B (1994) NADPH-diaphorase-positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for co-innervation of striated muscle by enteric neurons. Cell Tissue Res 276:23–30

    Article  PubMed  CAS  Google Scholar 

  • Niel JP (1986a) Reflex activation of the lower oesophageal sphincter in the cat induced by stimulation of the splanchnic afferent fibres. J Auton Nerv Syst 16:211–218

    Article  PubMed  CAS  Google Scholar 

  • Niel JP (1986b) Reflex excitation and inhibition of the lower oesophageal sphincter induced by gastric distension in the cat. J Auton Nerv Syst 16:205–209

    Article  PubMed  CAS  Google Scholar 

  • Nonidez JF (1946) Afferent nerves in the intermuscular plexus of the dog's oesophagus. J Comp Neurol 85:177–189

    Article  Google Scholar 

  • Ny L, Alm P, Ekstrom P, Hannibal J, Larsson B, Andersson KE (1994) Nitric oxide synthase-containing, peptide-containing, and acetylcholinesterase-positive nerves in the cat lower oesophagus. Histochem J 26:721–733

    Article  PubMed  CAS  Google Scholar 

  • Ny L, Alm P, Larsson B, Ekstrom P, Andersson KE (1995) Nitric oxide pathway in cat esophagus: localization of nitric oxide synthase and functional effects. Am J Physiol 268:G59–70

    PubMed  CAS  Google Scholar 

  • Orlando RC (2001) Overview of the mechanisms of gastroesophageal reflux. Am J Med 111 Suppl 8A:174S–177S

    Google Scholar 

  • Orlando RC (2003) Pathogenesis of gastroesophageal reflux disease. Am J Med Sci 326:274–278

    Article  PubMed  Google Scholar 

  • Orlando RC (2004) Esophageal perception and noncardiac chest pain. Gastroenterol Clin North Am 33:25–33

    Article  PubMed  Google Scholar 

  • Ottaviani G (1937/38) Osservazioni istoanatomiche e sperimentali sulla innervazione dell'esofago di alcuni mammiferi. Z Zellforsch Mikrosk Anat 27:393–429

    Google Scholar 

  • Ozaki N, Gebhart GF (2001) Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am J Physiol Gastrointest Liver Physiol 281:G1449–1459

    PubMed  CAS  Google Scholar 

  • Ozaki N, Sengupta JN, Gebhart GF (1999) Mechanosensitive properties of gastric vagal afferent fibers in the rat. J Neurophysiol 82:2210–2220

    PubMed  CAS  Google Scholar 

  • Page AJ, Blackshaw LA (1999) GABA(B) receptors inhibit mechanosensitivity of primary afferent endings. J Neurosci 19:8597–8602

    PubMed  CAS  Google Scholar 

  • Page AJ, Martin CM, Blackshaw LA (2002) Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J Neurophysiol 87:2095–2103

    PubMed  CAS  Google Scholar 

  • Page AJ, Slattery JA, O'Donnell TA, Cooper NJ, Young RL, Blackshaw LA (2005a) Modulation of gastro-oesophageal vagal afferents by galanin in mouse and ferret. J Physiol 563:809–819

    Article  PubMed  CAS  Google Scholar 

  • Page AJ, Young RL, Martin CM, Umaerus M, O'Donnell TA, Cooper NJ, Coldwell JR, Hulander M, Mattsson JP, Lehmann A, Blackshaw LA (2005b) Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 128:402–410

    Article  PubMed  CAS  Google Scholar 

  • Patterson LM, Zheng H, Ward SM, Berthoud HR (2003) Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell Tissue Res 311:277–287

    PubMed  CAS  Google Scholar 

  • Peghini PL, Pursnani KG, Gideon MR, Castell JA, Nierman J, Castell DO (1998) Proximal and distal esophageal contractions have similar manometric features. Am J Physiol 274:G325–G330

    PubMed  CAS  Google Scholar 

  • Phillips RJ, Baronowsky EA, Powley TL (2003) Long-term regeneration of abdominal vagus: efferents fail while afferents succeed. J Comp Neurol 455:222–237

    Article  PubMed  Google Scholar 

  • Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re- evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev 34:1–26

    Article  PubMed  CAS  Google Scholar 

  • Powley TL, Chi MM, Baronowsky EA, Phillips RJ (2005) Gastrointestinal Tract Innervation of the Mouse: Afferent Regeneration and Meal Patterning after Vagotomy. Am J Physiol Regul Integr Comp Physiol (in press)

    Google Scholar 

  • Prast H, Philippu A (1992) Nitric oxide releases acetylcholine in the basal forebrain. Eur J Pharmacol 216:139–140

    Article  PubMed  CAS  Google Scholar 

  • Qin C, Chandler MJ, Foreman RD (2003) Afferent pathways and responses of T3-T4 spinal neurons to cervical and thoracic esophageal distensions in rats. Auton Neurosci 109:10–20

    Article  PubMed  Google Scholar 

  • Qin C, Chandler MJ, Foreman RD (2004) Esophagocardiac convergence onto thoracic spinal neurons: comparison of cervical and thoracic esophagus. Brain Res 1008:193–197

    Article  PubMed  CAS  Google Scholar 

  • Qualman SJ, Haupt HM, Yang P, Hamilton SR (1984) Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson's disease. Gastroenterology 87:848–856

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a~local effector function? Cell Tissue Res 312:141–148

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2004) Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 122:445–459

    Article  PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2005) Number and distribution of intraganglionic laminar endings in the mouse esophagus as demonstrated with two different immunohistochemical markers. J Histochem Cytochem 53:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Raab M, Wörl J, Brehmer A, Neuhuber WL (2003) Reduction of NT-3 or TrkC results in fewer putative vagal mechanoreceptors in the mouse esophagus. Auton Neurosci 108:22–31

    Article  PubMed  CAS  Google Scholar 

  • Randich A, Gebhart GF (1992) Vagal afferent modulation of nociception. Brain Res Brain Res Rev 17:77–99

    Article  PubMed  CAS  Google Scholar 

  • Reichel B, Wörl J, Neuhuber WL (1995) NPY-positive nerve fibers on motor endplates in the rat esophagus stain also for VIP and NADPH-diaphorase. J~Anat 187:226

    Google Scholar 

  • Ren K, Randich A, Gebhart GF (1989) Vagal afferent modulation of spinal nociceptive transmission in the rat. J Neurophysiol 62:401–415

    PubMed  CAS  Google Scholar 

  • Robles-Chillida EM, Rodrigo J, Mayo I, Arnedo A, Gomez A (1981) Ultrastructure of free-ending nerve fibres in oesophageal epithelium. J Anat 133:227–233

    PubMed  CAS  Google Scholar 

  • Rodrigo J, de Felipe J, Robles-Chillida EM, Perez Anton JA, Mayo I, Gomez A (1982) Sensory vagal nature and anatomical access paths to esophagus laminar nerve endings in myenteric ganglia. Determination by surgical degeneration methods. Acta Anat 112:47–57

    PubMed  CAS  Google Scholar 

  • Rodrigo J, Hernandez CJ, Vidal MA, Pedrosa JA (1975a) Vegetative innervation of the esophagus. III. Intraepithelial endings. Acta Anat 92:242–258

    PubMed  CAS  Google Scholar 

  • Rodrigo J, Hernandez J, Vidal MA, Pedrosa JA (1975b) Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat 92:79–100

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo J, Polak JM, Fernandez L, Ghatei MA, Mulderry P, Bloom SR (1985) Calcitonin gene-related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Gastroenterology 88:444–451

    PubMed  CAS  Google Scholar 

  • Rodrigo J, Robles Chillida EM, De Felipe J, Perez Anton JA, Pedrosa JA, Arnedo A (1980a) Sensorivagal nature of oesophageal submucous layer nerve endings. Determination of surgical degeneration methods. Acta Anat 108:540–550

    PubMed  CAS  Google Scholar 

  • Rodrigo J, Robles Chillida EM, Espinosa F, De Felipe J, Hernandez CJ, Arnedo A, Mayo I (1980b) New contribution on the oesophageal mucous innervation in certain monkeys (Cercopithecidae). Acta Anat 108:510–520

    PubMed  CAS  Google Scholar 

  • Rodrigo J, Uttenthal LO, Peinado MA, Esteban FJ, Fernandez AP, Serrano J, Martinez de Velasco J, Santacana M, Bentura ML, Martinez-Murillo R, Pedrosa JA (1998) Distribution of nitric oxide synthase in the esophagus of the cat and monkey. J Auton Nerv Syst 70:164–179

    Article  PubMed  CAS  Google Scholar 

  • Rogers RC, Hermann GE, Travagli A (1999) Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J Physiol 514:369–383

    Article  PubMed  CAS  Google Scholar 

  • Rogers RC, Travagli RA, Hermann GE (2003) Noradrenergic neurons in the rat solitary nucleus participate in the esophageal-gastric relaxation reflex. Am J Physiol Integr Comp Physiol 285:R479–R489

    CAS  Google Scholar 

  • Rohen J (1955) Über den funktionellen Zusammenhang zwischen glatter und quergestreifter Muskulatur im menschlichen Oesophagus (Oesophagusstudien I.). Anat Anz 102:210–216

    PubMed  CAS  Google Scholar 

  • Rossiter CD, Norman WP, Jain M, Hornby PJ, Benjamin S, Gillis RA (1990) Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am J Physiol 259:G899–906

    PubMed  CAS  Google Scholar 

  • Rumessen JJ, de Kerchove d'Exaerde A, Mignon S, Bernex F, Timmermans JP, Schiffmann SN, Panthier JJ, Vanderwinden JM (2001) Interstitial cells of Cajal in the striated musculature of the mouse esophagus. Cell Tissue Res 306:1–14

    Article  PubMed  CAS  Google Scholar 

  • Sanders I, Mu L (1998) Anatomy of the human internal superior laryngeal nerve. Anat Rec 252:646–656

    Article  PubMed  CAS  Google Scholar 

  • Sandler AD, Schmidt C, Richardson K, Murray J, Maher JW (1993) Regulation of distal esophageal mucosal blood flow: the roles of nitric oxide and substance P. Surgery 114:285–293

    PubMed  CAS  Google Scholar 

  • Sang Q, Ciampoli D, Greferath U, Sommer L, Young HM (1999) Innervation of the esophagus in mice that lack Mash-1. J Comp Neurol 408:1–10

    Article  PubMed  CAS  Google Scholar 

  • Sang Q, Goyal RK (2000) Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmatic vagal stimulation in the mouse. Gastroenterology 119:1600–1609

    Article  PubMed  CAS  Google Scholar 

  • Sang Q, Goyal RK (2001) Swallowing reflex and brain stem neurons activated by superior laryngeal nerve stimulation in the mouse. Am J Physiol Gastrointest Liver Physiol 280:G191–200

    PubMed  CAS  Google Scholar 

  • Sang Q, Young HM (1997) Development of nicotinic receptor clusters and innervation accompanying the change in muscle phenotype in the mouse esophagus. J Comp Neurol 386:119–136

    Article  PubMed  CAS  Google Scholar 

  • Sang Q, Young HM (1998) The origin and development of the vagal and spinal innervation of the external muscle of the mouse esophagus. Brain Res 809:253–268

    Article  PubMed  CAS  Google Scholar 

  • Santafe MM, Salon I, Garcia N, Lanuza MA, Uchitel OD, Tomas J (2003) Modulation of ACh release by presynaptic muscarinic autoreceptors in the neuromuscular junction of the newborn and adult rat. Eur J Neurosci 17:119–127

    Article  PubMed  Google Scholar 

  • Satchell PM, McLeod JG (1984) Abnormalities of oesophageal mechanoreceptors in canine acrylamide neuropathy. J Neurol Neurosurg Psychiatry 47:692–698

    Article  PubMed  CAS  Google Scholar 

  • Sätzler K, Söhl LF, Bollmann JH, Borst JG, Frotscher M, Sakmann B, Lübke JH (2002) Three-dimensional reconstruction of a~calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci 22:10567–10579

    PubMed  Google Scholar 

  • Saxon DW, Robertson GN, Hopkins DA (1996) Ultrastructure and synaptology of the nucleus ambiguus in the rat: the semicompact and loose formations. J Comp Neurol 375:109–127

    Article  PubMed  CAS  Google Scholar 

  • Schicho R, Florian W, Liebmann I, Holzer P, Lippe IT (2004) Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci 19:1811–1818

    Article  PubMed  Google Scholar 

  • Schnitzler A, Volkmann J, Enck P, Frieling T, Witte OW, Freund HJ (1999) Different cortical organization of visceral and somatic sensation in humans. Eur J Neurosci 11:305–315

    Article  PubMed  CAS  Google Scholar 

  • Schoultz TW, Swett JE (1974) Ultrastructural organization of the sensory fibers innervating the Golgi tendon organ. Anat Rec 179:147–162

    Article  PubMed  CAS  Google Scholar 

  • Sengupta JN (2000) An overview of esophageal sensory receptors. Am J Med 108 Suppl 4a:87S–89S

    Google Scholar 

  • Sengupta JN, Gebhart GF (1994) Gastrointestinal afferent fibers and sensation. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract, 3rd ed. Raven Press, New York, 483–519

    Google Scholar 

  • Sengupta JN, Kauvar D, Goyal RK (1989) Characteristics of vagal esophageal tension-sensitive afferent fibers in the opossum. J Neurophysiol 61:1001–1010

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Saha JK, Goyal RK (1990) Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J Neurophysiol 64:796–812

    PubMed  CAS  Google Scholar 

  • Sengupta JN, Saha JK, Goyal RK (1992) Differential sensitivity to bradykinin of esophageal distension-sensitive mechanoreceptors in vagal and sympathetic afferents of the opossum. J Neurophysiol 68:1053–1067

    PubMed  CAS  Google Scholar 

  • Shiina T, Shimizu Y, Izumi N, Suzuki Y, Asano M, Atoji Y, Nikami H, Takewaki T (2005) A~comparative histological study on the distribution of striated and smooth muscles and glands in the esophagus of wild birds and mammals. J Vet Med Sci 67:115–117

    Article  PubMed  Google Scholar 

  • Sifrim D, Holloway R (2001) Transient lower esophageal sphincter relaxations: how many or how harmful? Am J Gastroenterol 96:2529–2532

    Article  PubMed  CAS  Google Scholar 

  • Singaram C, Sengupta A, Sweet MA, Sugarbaker DJ, Goyal RK (1994) Nitrinergic and peptidergic innervation of the human oesophagus. Gut 35:1690–1696

    PubMed  CAS  Google Scholar 

  • Sivarao DV, Goyal RK (2000) Functional anatomy and physiology of the upper esophageal sphincter. American Journal of Medicine 108(Suppl 4a):27S–37S

    Article  PubMed  Google Scholar 

  • Slawik FF (1942) Über das Vorkommen von Muskelspindeln in der Muscularis propria des menschlichen Oesophagus. Anat Anz 93:133–137

    Google Scholar 

  • Smid SD, Blackshaw LA (2000a) Neuromuscular function of the human lower oesophageal sphincter in reflux disease and Barrett's oesophagus. Gut 46:756–761

    Article  PubMed  CAS  Google Scholar 

  • Smid SD, Blackshaw LA (2000b) Vagal ganglionic and nonadrenergic noncholinergic neurotransmission to the ferret lower oesophageal sphincter. Auton Neurosci 86:30–36

    Article  PubMed  CAS  Google Scholar 

  • Smolen AJ (1988) Morphology of synapses in the autonomic nervous system. J Electron Microsc Tech 10:187–204

    Article  PubMed  CAS  Google Scholar 

  • Söllenböhmer C, Enck P, Häussinger D, Frieling T (1996) Electrically evoked cerebral potentials during esophageal distension at perception and pain threshold. Am J Gastroenterol 91:970–975

    PubMed  Google Scholar 

  • Sörensen B, Neuhuber WL, Wörl J (1995) Nitrerge Co-Innervation motorischer Endplatten im Ösophagus bei Mensch und Schwein. Ann Anat Suppl 177:214

    Google Scholar 

  • Stefanelli A (1938) Considerazioni ed osservazioni sulla struttura microscopica del tessuto nervoso autonomo alla periferia nei vertebrati superiori. Z Zellforsch Mikrosk Anat 28:485–511

    Article  Google Scholar 

  • Stein HJ, Liebermann-Meffert D, DeMeester TR, Siewert JR (1995) Three-dimensional pressure image and muscular structure of the human lower esophageal sphincter. Surgery 117:692–698

    Article  PubMed  CAS  Google Scholar 

  • Sterin-Borda L, Ganzinelli S, Berra A, Borda E (2003) Novel insight into the mechanisms involved in the regulation of the m1 muscarinic receptor, iNOS and nNOS mRNA levels. Neuropharmacology 45:260–269

    Article  PubMed  CAS  Google Scholar 

  • Stöhr J (1957) Mikroskopische Anatomie des vegetativen Nervensystems. In: Bargmann W (eds) Handbuch der Mikroskopischen Anatomie des Menschen. Springer, Berlin, 1–678

    Google Scholar 

  • Storr M, Allescher HD (1999) Esophageal pharmacology and treatment of primary motility disorders. Dis Esophagus 12:241–257

    Article  PubMed  CAS  Google Scholar 

  • Storr M, Geisler F, Neuhuber WL, Schusdziarra V, Allescher HD (2000) Endomorphin-1 and~-2, endogenous ligands for the mu-opioid receptor, inhibit striated and smooth muscle contraction in the rat oesophagus. Neurogastroenterol Mot 12:441–448

    Article  CAS  Google Scholar 

  • Storr M, Geisler F, Neuhuber WL, Schusdziarra V, Allescher HD (2001) Characterization of vagal input to the rat esophageal muscle. Auton Neurosci 91:1–9

    Article  PubMed  CAS  Google Scholar 

  • Suft G, Wörl J, Neuhuber WL (1997) Postnatal development of calretinin-positive nerve fibers in the rat esophagus. Clin Auton Res 7:42

    Article  Google Scholar 

  • Swithers SE, Baronowsky E, Powley TL (2002) Vagal intraganglionic laminar endings and intramuscular arrays mature at different rates in pre-weanling rat stomach. Auton Neurosci 102:13–19

    Article  PubMed  Google Scholar 

  • Takaki M, Jin JG, Lu YF, Nakayama S (1990) Effects of piperine on the motility of the isolated guinea-pig ileum: comparison with capsaicin. Eur J Pharmacol 186:71–77

    Article  PubMed  CAS  Google Scholar 

  • Teixeira AF, Vives P, Krammer HJ, Kühnel W, Wedel T (2001) Structural organization of the enteric nervous system in the cattle esophagus revealed by wholemount immunohistochemistry. Ital J Anat Embryol 106:313–321

    PubMed  CAS  Google Scholar 

  • Terenghi G, Polak JM, Rodrigo J, Mulderry PK, Bloom SR (1986) Calcitonin gene-related peptide-immunoreactive nerves in the tongue, epiglottis and pharynx of the rat: occurrence, distribution and origin. Brain Res 365:1–14

    Article  PubMed  CAS  Google Scholar 

  • Tong Q, Ma J, Kirchgessner AL (2001) Vesicular glutamate transporter 2 in the brain-gut axis. Neuroreport 12:3929–3934

    Article  PubMed  CAS  Google Scholar 

  • Tottrup A, Svane D, Forman A (1991) Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Physiol 260:G385–389

    PubMed  CAS  Google Scholar 

  • Toyama T, Yokoyama I, Nishi K (1975) Effects of hexamethonium and other ganglionic blocking agents on electrical activity of the esophagus induced by vagal stimulation in the dog. Eur J Pharmacol 31:63–71

    Article  PubMed  CAS  Google Scholar 

  • Uddman R, Alumets J, Edvinsson L, Hakanson R, Sundler F (1978) Peptidergic (VIP) innervation of the esophagus. Gastroenterology 75:5–8

    PubMed  CAS  Google Scholar 

  • Uddman R, Alumets J, Hakanson R, Sundler F, Walles B (1980) Peptidergic (enkephalin) innervation of the mammalian esophagus. Gastroenterology 78:732–737

    PubMed  CAS  Google Scholar 

  • Uddman R, Grunditz T, Luts A, Desai H, Fernstrom G, Sundler F (1995) Distribution and origin of the peripheral innervation of rat cervical esophagus. Dysphagia 10:203–212

    Article  PubMed  CAS  Google Scholar 

  • Vanderwinden JM (1994) Role of nitric oxide in gastrointestinal function and disease. Acta Gastroenterol Belg 57:224–229

    PubMed  CAS  Google Scholar 

  • Vietze S, Neuhuber WL, Wörl J (1995) Postnatale Entwicklung der nitrergen Co-Innervation der quergestreiften Ösophagusmuskulatur bei der Ratte. Ann Anat Suppl 177:213

    Google Scholar 

  • Wang FB, Powley TL (2000) Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 421:302–324

    Article  PubMed  CAS  Google Scholar 

  • Wang ZJ, Neuhuber WL (2003) Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity. Anat Embryol 207:363–371

    Article  PubMed  CAS  Google Scholar 

  • Wank M, Neuhuber WL (2001) Local differences in vagal afferent innervation of the rat esophagus are reflected by neurochemical differences at the level of the sensory ganglia and by different brainstem projections. J Comp Neurol 435:41–59

    Article  PubMed  CAS  Google Scholar 

  • Watson N, Reddy H, Eglen RM (1995) Characterization of muscarinic receptor and beta-adrenoceptor interactions in guinea-pig oesophageal muscularis mucosae. Eur J Pharmacol 294:779–785

    Article  PubMed  CAS  Google Scholar 

  • Wattchow DA, Furness JB, Costa M, O'Brien PE, Peacock M (1987) Distributions of neuropeptides in the human esophagus. Gastroenterology 93:1363–1371

    PubMed  CAS  Google Scholar 

  • Wei JY, Wang YH, Go VL, Tache Y (1997) Esophageal distension induced gastric relaxation is mediated in part by vagal peripheral reflex mechanism in rats. J Auton Nerv Syst 63:12–18

    Article  PubMed  CAS  Google Scholar 

  • Weisbrodt NW (1976) Neuromuscular organization of esophageal and pharyngeal motility. Arch Int Med 136:524–531

    Article  CAS  Google Scholar 

  • Whitmore I (1983) The ultrastructure of oesophageal striated muscle in the guinea-pig and marmoset. Cell Tissue Res 234:365–376

    Article  PubMed  CAS  Google Scholar 

  • Whitmore I, Notman JA (1987) A~quantitative investigation into some ultrastructural characteristics of guinea-pig oesophageal striated muscle. J Anat 153:233–239

    PubMed  CAS  Google Scholar 

  • Wiedner EB, Bao X, Altschuler SM (1995) Localization of nitric oxide synthase in the brain stem neural circuit controlling esophageal peristalsis in rats. Gastroenterology 108:367–375

    Article  PubMed  CAS  Google Scholar 

  • Wienbeck M (1987) Involvement of enkephalins and other endogenous opioids in the regulation of esophageal motility. Gastroenterol Clin Biol 11:52B–55B

    PubMed  CAS  Google Scholar 

  • Wörl J, Dütsch F, Neuhuber WL (2002) Development of neuromuscular junctions in the mouse esophagus: focus on establishment and reduction of enteric co-innervation. Anat Embryol 205:141–152

    Article  PubMed  Google Scholar 

  • Wörl J, Fischer J, Neuhuber WL (1998) Nonvagal origin of galanin-containing nerve terminals innervating striated muscle fibers of the rat esophagus. Cell Tissue Res 292:453–461

    Article  PubMed  Google Scholar 

  • Wörl J, Mayer B, Neuhuber WL (1994) Nitrergic innervation of the rat esophagus: focus on motor endplates. J Auton Nerv Syst 49:227–233

    Article  PubMed  Google Scholar 

  • Wörl J, Mayer B, Neuhuber WL (1997) Spatial relationships of enteric nerve fibers to vagal motor terminals and the sarcolemma in motor endplates of the rat esophagus. A~confocal laser scanning and electron-microscopic study. Cell Tissue Res 287:113–118

    PubMed  Google Scholar 

  • Wörl J, Neuhuber WL (2000) Spatial and temporal organization of TrkB expression in the developing musculature of the mouse esophagus. Histochem Cell Biol 114:229–238

    PubMed  Google Scholar 

  • Wörl J, Neuhuber WL (2005a) Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol 123:117–130

    Article  PubMed  CAS  Google Scholar 

  • Wörl J, Neuhuber WL (2005b) Ultrastructural analysis of the smooth-to-striated transition zone in the developing mouse esophagus: emphasis on apoptosis of smooth and origin and differentiation of striated muscle cells. Dev Dynam 233:964–982

    Article  Google Scholar 

  • Wu M, Majewski M, Wojtkiewicz J, Vanderwinden JM, Adriaensen D, Timmermans JP (2003a) Anatomical and neurochemical features of the extrinsic and intrinsic innervation of the striated muscle in the porcine esophagus: evidence for regional and species differences. Cell Tissue Res 311:289–297

    PubMed  CAS  Google Scholar 

  • Wu M, Van Nassauw L, Kroese AB, Adriaensen D, Timmermans JP (2003b) Myenteric nitrergic neurons along the rat esophagus: evidence for regional and strain differences in age-related changes. Histochem Cell Biol 119:395–403

    PubMed  CAS  Google Scholar 

  • Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Atoji Y, Kuramoto H, Suzuki Y (1998) Calretinin-immunoreactive laminar nerve endings in the laryngeal mucosa of the rat. Cell Tissue Res 292:613–617

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Hosono I, Atoji Y, Suzuki Y (1997) Morphological study of the vagal afferent nerve endings in the laryngeal mucosa of the dog. Anat Anz 179:65–73

    CAS  Google Scholar 

  • Yamamoto Y, Kitamura N, Yamada J, Atoji Y, Suzuki Y, Yamashita T (1994) Structure of the enteric nervous system in the sheep omasum as revealed by neurofilament protein-like immunoreactivity. J Anat 184:399–405

    PubMed  Google Scholar 

  • Yokota R, Burnstock G (1983) Synaptic organisation of the pelvic ganglion in the guinea-pig. Cell Tissue Res 232:379–397

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Undem BJ, Kollarik M (2005) Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J Physiol 563:831–842

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Brookes SJ (2000) Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 20:6249–6255

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Brookes SJ (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534:255–268

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Costa M, Brookes SJ (2003) Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J Physiol 553:575–587

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, D'Antona G, Brookes SJ, Costa M (2002) Functional GABAB receptors are present in guinea pig nodose ganglion cell bodies but not in peripheral mechanosensitive endings. Auton Neurosci 102:20–29

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Lauve A, Patterson LM, Berthoud HR (1997) Limited excitatory local effector function of gastric vagal afferent intraganglionic terminals in rats. Am J Physiol 273:G661–669

    PubMed  CAS  Google Scholar 

Download references

Editor information

W.L. Neuhuber

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Advances in Anatomy Embryology and Cell Biology. In: Neuhuber, W. (eds) Innervation of the Mammalian Esophagus. Advances in Anatomy, Embryology and Cell Biology, vol 185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32948-0_1

Download citation

Publish with us

Policies and ethics