Skip to main content

CO2 Fertilization: When, Where, How Much?

  • Chapter

Part of the book series: Global Change — The IGBP Series ((GLOBALCHANGE))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth EA, Davey PA, Hymus GJ, Osborne CE, Rogers A, Blum H, Nösberger J, Long SE (2003) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant Cell Environ 26:705–714

    Article  Google Scholar 

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric CO2-concentration in relation to the global carbon cycle. Global Change Biology 1:243–274

    Article  Google Scholar 

  • Asshoff R, Zotz G, Körner C (2006) Growth and phenology of mature temperate forest trees in elevated CO2. Global Change Biology 12:848–861

    Article  Google Scholar 

  • Barton CVM, Lee HSJ, Jarvis PG (1993) A branch bag and CO2 control system for long-term CO2 enrichment of mature Sitka spruce (Picea sitchensis (Bong.) Carr.). Plant Cell Environ 16:1139–1148

    Article  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  • Bowes G (1993) Facing the inevitable: plans and increasing atmospheric CO2. Annu Rev Plant Phsiol Mol Biol 44:309–332

    Article  Google Scholar 

  • Bunce JA (2004) Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia 140:1–10

    Article  Google Scholar 

  • Campbell BD, Stafford-Smith DM, McKeon GM (1997) Elevated CO2 and water supply interactions in grasslands: a pastures and rangelands management perspective. Glob Change Biol 3:177–187

    Article  Google Scholar 

  • Cao MK, Woodward FI (1998) Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol 4:185–198

    Article  Google Scholar 

  • Cech PG, Pepin S, Körner Ch (2003) Elevated CO2 reduces sap flux in mature deciduous forest trees. Oecologia 137:258–268

    Article  Google Scholar 

  • Conley MM, Kimball BA, Brooks TJ, Pinter PJ, Hunsaker DJ, Wall GW, Adam NR, LaMorte RL, Matthias AD, Thompson TL, Leavitt SW, Ottman MJ, Cousins AB, Triggs JM (2001) CO2 enrichment increases water-use efficiency in sorghum. New Phytol 151:407–412

    Article  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Change Biol 4:43–54

    Article  Google Scholar 

  • DeLucia EH, Moore DJ (2005) Contrasting responses of forest ecosystems to rising atmospheric CO2: implications for the global C cycle. Global Biogeochemical Cycles DOI 10:1029/2004GB002346

    Google Scholar 

  • DeLucia EH, George K, Hamilton JG (2002) Radiation use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. Tree Physiol 22:1003–1010

    Google Scholar 

  • Díaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617

    Article  Google Scholar 

  • Dijkstra P, Hymus G, Colavito D, Vieglais DA, Cundari CM, Johnson DP, Hungate BA, Hinkle CR, Drake BG (2002) Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem. Glob Change Biol 8:90–103

    Article  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639

    Article  Google Scholar 

  • Ellsworth DS (1999) CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ 22:461–472

    Article  Google Scholar 

  • Evans LT, Dunstone RL (1970) Some physiological aspects of evolution in wheat. Aust J Biol Sci 23:725–741

    Google Scholar 

  • Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH (2002) The nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 132:567–578

    Article  Google Scholar 

  • Gerten D, Hoff H, Bondeau A, Luch W, Smith P, Zaehle S (2005) Contemporary “green” water flows: simulations with a dynamic global vegetation and water balance model. Phys Chem Earth (in press)

    Google Scholar 

  • Ghannoum O, Von Caemmerer S, Ziska LH, Conroy JP (2000) The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ 23:931–942

    Article  Google Scholar 

  • Granados J, Körner Ch (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Change Biol 8:1109–1117

    Article  Google Scholar 

  • Grünzweig JM, Körner Ch (2001) Biodiversity effects of elevated CO2 in species-rich model communities from the semi-arid Negev of Israel. Oikos 95:112–124

    Article  Google Scholar 

  • Guak S, Olsyzk DM, Fuchigami LH, Tingey DT (1998) Effects of elevated CO2 and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii). Tree Physiol 18:671–679

    Google Scholar 

  • Hamerlynck EP, Huxman TE, Charlet TN, Smith SD (2002) Effects of elevated CO2 (FACE) on the functional ecology of the drought-deciduous Mojave Desert shrub, Lycium andersonii. Environ Exp Bot 48:93–106

    Article  Google Scholar 

  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260

    Article  Google Scholar 

  • Handa IT, Körner Ch, Hättenschwiler S (2005) A test of the tree-line carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 86:1288–1300

    Google Scholar 

  • Häring DA, Körner Ch (2004) CO2 enrichment reduces the relative contribution of latex and latex-related hydrocarbons to biomass in Euphorbia lathyris. Plant Cell Environ 27:209–217

    Article  Google Scholar 

  • Hättenschwiler S, Körner Ch (1996) System-level adjustments to elevated CO2 in model spruce ecosystems. Global Change Biol 2:377–387

    Article  Google Scholar 

  • Hättenschwiler S, Körner Ch (1998) Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia 113:104–114

    Article  Google Scholar 

  • Hättenschwiler S, Körner Ch (2000) Tree seedling responses to in situ CO2-enrichment differ among species and depend on understorey light availability. Global Change Biol 6:213–226

    Article  Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner Ch (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Global Change Biology 3:436–471

    Article  Google Scholar 

  • Hebeisen T, Lüscher A, Zanetti S, Fischer BU, Hartwig UA, Frehner M, Hendrey GR, Blum H, Nösberger J (1997) Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob Change Biol 3:149–160

    Article  Google Scholar 

  • Hibbs DE, Chan SS, Castellano M, Niu CH (1995) Response of red alder seedlings to CO2 enrichment and water stress. New Phytol 129:569–577

    Article  Google Scholar 

  • Hungate BA, Reichstein M, Dijkstra P, Johnson D, Hymus G, Tenhunen JD, Hinkle CR, Drake BG (2002) Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Glob Change Biol 8:289–298

    Article  Google Scholar 

  • Hymus GJ, Johnson DP, Dore S, Dijkstra P, Anderson HP, Hinkle CR, Drake BG (2003) Effects of elevated atmospheric CO2 on net ecosystem CO2 exchange of a scrub-oak ecosystem. Global Change Biology 9:1802–1812

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Third Assessment Report. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Isebrands JG, McDonald EP, Kruger E, Hendrey G, Percy K, Pregitzer K, Sober J, Karnosky DF (2001) Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environ Pollut 115:359–371

    Article  Google Scholar 

  • Kimball BA, Morris CF, Pinter PJ, Wall GW, Hunsaker DJ, Adamsen FJ, LaMorte RL, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ (2001) Elevated CO2, drought and soil nitrogen effects on wheat grain quality. New Phytol 150:295–303

    Article  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Google Scholar 

  • King JY, Mosier AR, Morgan JA, LeCain DR, Milchunas DG, Parton WJ (2004) Plant nitrogen dynamics in shortgrass steppe under elevated atmospheric carbon dioxide. Ecosystems 7:147–160

    Google Scholar 

  • Kinney KK, Lindroth RL, Jung SM, Nordheim EV (1997) Effects of CO2 and NO3-availability on deciduous trees: phytochemistry and insect performance. Ecology 78:215–230

    Article  Google Scholar 

  • Knapp AK, Hamerlynck EP, Ham JM, Owensby CE (1996) Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form. Vegetatio 125:31–41

    Article  Google Scholar 

  • Körner Ch (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Körner Ch (2002) Grassland in a CO2-enriched world. In: Durand JL, Emile JC, Huyghe C, Lemaire G (eds) Multi-function grasslands, quality forages, animal products and landscapes. Imprimerie P. Oudin, Piotiers, pp 611–624

    Google Scholar 

  • Körner Ch (2003a) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner Ch (2003b) Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Phil Trans R Soc Lond A 361:2023–2041

    Article  Google Scholar 

  • Körner Ch (2003c) Nutrients and sink activity drive plant CO2 responses — caution with literature-based analysis. New Phytol 159:537–538

    Article  Google Scholar 

  • Körner Ch (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond Ser B-Biol Sci 359:493–498

    Article  Google Scholar 

  • Körner Ch, Arnone JA III (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675

    Article  Google Scholar 

  • Körner Ch, Miglietta F (1994) Long term effects of naturally elevated CO2 on mediterranean grassland and forest trees. Oecologia 99:343–351

    Article  Google Scholar 

  • Körner Ch, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  Google Scholar 

  • LaDeau SL, Clark JS (2001) Rising CO2 levels and the fecundity of forest trees. Science 292:95–98

    Article  Google Scholar 

  • Lauber W, Körner Ch (1997) In situ stomatal response to long-term CO2 enrichment in calcareous grassland plants. Acta Oecologica 18:221–229

    Article  Google Scholar 

  • Leavitt SW, Pendall E, Paul EA, Brooks T, Kimball BA, Pinter Jr PJ, Johnson HB, Matthias A, Wall GW, LaMotte RL (2001) Stable-carbon isotopes and soil organic carbon in wheat under CO2 enrichment. New Phytol 150:305–314

    Article  Google Scholar 

  • LeCain DR, Morgan JA, Mosier AR, Nelson JA (1993) Soil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semi-arid ecosystem under elevated CO2. Ann Bot 92:41–52

    Article  Google Scholar 

  • Lincoln DE, Fajer ED, Johnson RH (1993) Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol Evol 8:64–68

    Article  Google Scholar 

  • Loehle C (1995) Anomalous responses of plants to CO2 enrichment. Oikos 73:181–187

    Article  Google Scholar 

  • Lutze JL, Roden JS, Holly CJ, Wolfe J, Egerton JJG, Ball MC (1998) Elevated atmospheric [CO2] promotes frost damage in evergreen tree seedlings. Plant Cell Environ 21:631–635

    Article  Google Scholar 

  • Maniak U (1988) Hydrologie und Wasserwirtschaft — eine Einführung für Ingeniere. Springer-Verlag, Berlin

    Google Scholar 

  • Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387

    Article  Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS, Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149:247–264

    Article  Google Scholar 

  • Meinzer FC, Grantz DA (1991) Coordination of stomata, hydraulic, and canopy boundary layer properties: do stomata balance conductances by measuring transpiration? Physiol Plant 83:324–329

    Article  Google Scholar 

  • Meinzer FC, Goldstein G, Holbrook NM, Jackson P, Cavelier J (1993) Stomatal and environmental control of transpiration in a lowland tropical forest tree. Plant Cell Environ 16:429–436

    Article  Google Scholar 

  • Miglietta F, Raschi A, Bettarini I, Resti R, Selvi F (1993) Natural CO2 springs in Italy: a resource for examining long-term response of vegetation to rising atmospheric CO2 concentrations. Plant Cell Environ 16:873–878

    Article  Google Scholar 

  • Milchunas DG, Varnamkhasti AS, Lauenroth WK, Goetz H (1995) Forage quality in relations to long-term grazing history, current-year defoliation, and water resource. Oecologia 101:366–374

    Article  Google Scholar 

  • Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005) Elevated CO2 and defoliation effects on a shortgrass steppe: forage quality versus quantity for ruminants. Agriculture, Ecosystems and Environment (in press)

    Google Scholar 

  • Morgan JA, LeCain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 enhances water relations and productivity and affects gas exchange in C-3 and C-4 grasses of the Colorado shortgrass steppe. Glob Change Biol 7:451–466

    Article  Google Scholar 

  • Morgan JA, Pataki DE, Körner Ch, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004a) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25

    Article  Google Scholar 

  • Morgan JA, Mosier AR, Milchunas DG, LeCain DR, Nelson JA, Parton WJ (2004b) CO2 enhances productivity, alters species composition, and reduced digestibility of shortgrass steppe vegetation. Ecological Applications 14:208–219

    Google Scholar 

  • Niklaus PA, Körner Ch (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511

    Google Scholar 

  • Niklaus PA, Glöckner E, Siegwolf R, Körner Ch (2001a) Carbon allocation in calcareous grassland under elevated CO2: a combined 13C pulse-labelling/soil physical fractionation study. Funct Ecol 15:43–50

    Article  Google Scholar 

  • Niklaus PA, Leadley PW, Schmid B, Körner Ch (2001b) A long-term field study on biodiversity x elevated CO2 interactions in grassland. Ecol Monogr 71:341–356

    Article  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Nietch CT (1995) Increased growth efficiency of Quercus alba trees in a CO2-enriched atmosphere. New Phytologist 131:91–97

    Article  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    Article  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition. A synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RT, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications 12:1261–1266

    Google Scholar 

  • Norby RJ, Sholtis JD, Gunderson CA, Jawdy SS (2003) Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Oecologia 136:574–584

    Article  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fineroot production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Nat Acad Sci 101:9689–9693

    Article  Google Scholar 

  • Obrist D, Arnone III JA, Körner Ch (2001) In situ effects of elevated atmospheric CO2 on leaf freezing resistance and carbohydrates in a native temperate grassland. Ann Bot 87:839–844

    Article  Google Scholar 

  • O’Neill EG, Norby RJ (1996) Litter quality and decomposition rates of foliar litter produced under CO2 enrichment. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 87–103

    Google Scholar 

  • Oren R, Ellsworth DE, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  Google Scholar 

  • Owensby CE, Cochran RC, Auen LM (1996) Effects of elevated carbon dioxide on forage quality for ruminants. In: Körner Ch, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 363–371

    Google Scholar 

  • Owensby CE, Ham JM, Knapp AK, Bremer D, Auen LM (1997) Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Glob Change Biol 3:189–195

    Article  Google Scholar 

  • Pataki DE, Oren R, Tissue DT (1998) Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L. Oecologia 117:47–52

    Article  Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo YQ, Megonigal JP, Olsrud M, Ryan MG, Wan SQ (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Article  Google Scholar 

  • Penuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol Evol 13:20–24

    Article  Google Scholar 

  • Phillips OL, Vasquez Martinez R, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Monteagudo Mendoza A, Neill D, Nunez Vargas P, Alexiades M, Ceron C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vincenti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    Article  Google Scholar 

  • Pinter PJ jr., Kimball BA, Garcia RL, Wall GW, Hunsaker DJ, LaMorte RL (1996) Free-air CO2 enrichment: responses of cotton and wheat crops. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 215–249

    Google Scholar 

  • Poorter H, Perez-Soba M (2001) The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129:1–20

    Article  Google Scholar 

  • Rawson HM (1992) Plant responses to temperature under conditions of elevated CO2. Aust J Bot 40:473–490

    Article  Google Scholar 

  • Repo T, Hänninen H, Kellomäki S (1996) The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine. Plant Cell Environ 19:209–216

    Article  Google Scholar 

  • Samarakoon AB, Gifford RM (1995) Soil water content under plants at high CO2 concentration and interactions with the direct CO2 effects: a species comparison. Journal of Biogeography 22:193–202

    Article  Google Scholar 

  • Saugier B (1983) Plant growth and its limitations in crops and natural communities. In: Mooney HA, Godron M (eds) Disturbance and ecosystems: components of response. Ecol Studies 44:159–174, Springer-Verlag, Berlin

    Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tansley Review No. 98 Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Article  Google Scholar 

  • Schäfer KVR, Oren R, Lai CT, Katul GG (2002) Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob Change Biol 8:895–911

    Article  Google Scholar 

  • Schäppi B, Körner Ch (1996) Growth responses of an alpine grassland to elevated CO2. Oecologia 105:43–52

    Article  Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Article  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  Google Scholar 

  • Spinnler D, Egli P, Körner Ch (2002) Four-year growth dynamics of beech-spruch model ecosystems under CO2 enrichment on two different forest soils. Trees 16:423–436

    Article  Google Scholar 

  • Steinmann K, Siegwolf R, Saurer M, Körner Ch (2004) Carbon fluxes to the soil in a mature temperate forest assessed by C-13 isotope tracing. Oecologia 141:489–501

    Article  Google Scholar 

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of water balance. Am Nat 135:649–679

    Article  Google Scholar 

  • Stocker R, Leadley PW, Körner Ch (1997) Carbon and water fluxes in a calcareous grassland under elevated CO2. Functional Ecology 11:222–230

    Article  Google Scholar 

  • Sullivan JH (1997) Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth: implications for terrestrial ecosystems. Plant Ecol 128:194–206

    Article  Google Scholar 

  • Thürig B, Körner Ch, Stöcklin J (2003) Seed production and seed quality in a calcareous grassland in elevated CO2. Glob Change Biol 9:873–884

    Article  Google Scholar 

  • Tognetti R, Giovannelli A, Longobucco A, Miglietta F, Raschi A (1996) Water relations of oak species growing in the natural CO2 spring of Rapolano (central Italy). Ann Sci Forest 53:475–485

    Google Scholar 

  • Tognetti R, Raschi A, Jones MB (2000) Seasonal patterns of tissue water relations in three Mediterranean shrubs co-occurring at a natural CO2 spring. Plant Cell Environ 23:1341–1351

    Article  Google Scholar 

  • Tolley LC, Strain BR (1984) Effects of CO2 enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Can J Bot 62:2135–2139

    Article  Google Scholar 

  • Volder A, Edwards EJ, Evans JR, Robertson BC, Schortemeyer M, Gifford RM (2004) Does greater night-time, rather than constant, warming alter growth of managed pasture under ambient and elevated atmospheric CO2? New Phytol 162:397–411

    Article  Google Scholar 

  • Volin JC, Reich PB, Givnish TJ (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytol 138:315–325

    Article  Google Scholar 

  • Volk M, Niklaus PA, Körner Ch (2000) Soil moisture effects determine CO2 responses of grassland species. Oecologia 125:380–388

    Article  Google Scholar 

  • Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol 162:437–446

    Article  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a test of current theories and perceptions. Global Change Biol 5:723–741

    Article  Google Scholar 

  • Wardlaw IF (1990) Tansley Review No. 27. The control of carbon partitioning in plants. New Phytol 116:341–381

    Article  Google Scholar 

  • Wright SJ, Calderon O, Hernandez A, Paton S (2004) Are lianas increasing in importance in tropical forests? A 17-year record from Panama. Ecology 85:484–489

    Google Scholar 

  • Wullschleger SD, Norby RJ (2001) Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytol 150:489–498

    Article  Google Scholar 

  • Wullschleger SD, Gunderson CA, Hanson PJ, Wilson KB, Norby RJ (2002) Sensitivity of stomatal and canopy conductance to elevated CO2 concentration — interacting variables and perspectives of scale. New Phytol 153:485–496

    Article  Google Scholar 

  • Würth MKR, Winter K, Körner Ch (1998) In situ responses to elevated CO2 in tropical forest understorey plants. Funct Ecol 12:886–895

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant & Soil 151:105–117

    Article  Google Scholar 

  • Zotz G, Pepin S, Körner Ch (2005) No down-regulation of leaf photosynthesis in mature forest trees after three years of exposure to elevated CO2. Plant Biology (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Körner, C., Morgan, J., Norby, R. (2007). CO2 Fertilization: When, Where, How Much?. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_2

Download citation

Publish with us

Policies and ethics