Skip to main content

Understanding Global Fire Dynamics by Classifying and Comparing Spatial Models of Vegetation and Fire

  • Chapter

Part of the book series: Global Change — The IGBP Series ((GLOBALCHANGE))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agee JK (1993) Fire ecology of Pacific Northwest Forests. Island Press, Washington DC USA

    Google Scholar 

  • Albini FA (1976) Estimating wildfire behavior and effects. USDA Forest Service General Technical Report INT-30. Intermountain Research Station, Ogden, UT, USA. 45 pages

    Google Scholar 

  • Anderson DG, Catchpole EA, DeMestre NJ, Parkes E (1982) Modeling the spread of grass fires. J. Austral. Math. Soc. 23:451–466

    Article  Google Scholar 

  • Bristow KL; Campbell GS (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology 31:159–66

    Article  Google Scholar 

  • Cary GJ (1998) Predicting fire regimes and their ecological effects in spatially complex landscapes. Doctoral dissertation. Australian National University, Canberra, AU

    Google Scholar 

  • Cary GJ (2002) Importance of a changing climate for fire regimes in Australia. In: Bradstock RA, Gill AM, Williams JE (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, UK, pp 26–46

    Google Scholar 

  • Cary GJ, Banks JCG (1999) Fire regime sensitivity to global climate change: An Australia perspective. in J L Innes, M Beniston, and MM Verstraete, Editors. Advances in Global Change Research: Biomass burning and its inter-relationships with the climate system. Kluwer Academic Publishers, London, UK

    Google Scholar 

  • Cary GJ, Gallant JC (1997) Application of a stochastic climate generator for fire danger modelling. Proceedings of the Bushfire’ 97 Australasian Bushfire Conference, July 1997, Darwin, Northern Territory, Australia

    Google Scholar 

  • Cary GJ, Keane RE, Gardner RH, Lavorel S, Flannigan MD, Davies ID, Li C, Lenihan JM, Rupp TS, Mouillot F (2006) Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern and climate. Landscape Ecology 21: 121–137

    Article  Google Scholar 

  • Clark JS (1988) Effect of climate change on fire regimes in northwestern Minnesota. Nature 334:233–235

    Article  Google Scholar 

  • Clark JS (1993) Fire, climate change, and forest processes during the past 2000 years. Geological Society of America, Special Paper 276:295–308

    Google Scholar 

  • Crutzen PJ, Goldammer JG (1993) Fire in the Environment: The ecological, atmospheric and climatic importance of vegetation fires. John Wiley and Sons, New York, NY, USA

    Google Scholar 

  • DeBano LF, Neary DG, Folliott PF (1998) Fire’s Effect on Ecosystems. John Wiley and Sons, New York, New York USA. 254 pages

    Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 8:121–133

    Article  Google Scholar 

  • Flannigan MD, Van Wagner CE (1991) Climate change and wildfire in Canada. Canadian Journal of Forest Research 21:66–72

    Google Scholar 

  • Forestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behaviour Prediction Systems. Information Report ST-X-3. Ottawa: Forestry Canada, Science and Sustainable Development Directorate. 63 pages

    Google Scholar 

  • Fox BJ, Fox MD, McKay GM (1979) Litter accumulation after fire in a eucalypt forest. Australian Journal of Botany 27:157–65

    Article  Google Scholar 

  • Gardner RH, Hargrove WW, Turner MG, Romme WH (1996) Climate change, disturbances and landscape dynamics. In: Walker BH, Steffen WL (eds) Global change and terrestrial ecosystems. Cambridge University Press, Cambridge, MA, USA, pp 149–172

    Google Scholar 

  • Gardner RH, Romme WH, Turner MG (1999) Predicting forest fire effects at landscape scales. Pages 163–185 in DJ Mladenoff and WL Baker Editors. Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Gill AM (1975) Fire and the Australian flora: a review. Australian Forestry 38, 4–25

    Google Scholar 

  • Hargrove WW, Gardner RH, Turner MG, Romme WH, Despain DG (2000) Simulating fire patterns in heterogeneous landscapes. Ecological Modelling 135:243–263

    Article  Google Scholar 

  • Hawkes BC; Flannigan MD, Editors (2000) Landscape fire modeling-challenges and opportunitites. Northern Forestry Centre Information Report NOR-X-371, Canadian Forestry Service, Victoria, British Columbia. 68 pages

    Google Scholar 

  • Hirsch KG (1996) Canadian Forest Fire Behavior Prediction (FBP) System: User’s Guide. Natural Resources Canada, Canadian Forest Service, Northwest Region, Northern Forest Centre, Edmonton, Alberta, Special Report Number 7. 12 pages

    Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. IPCC Third Assessment Report: Summaries for Policymakers WG I Climate Change 2001

    Google Scholar 

  • Johnson EA (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, Cambridge

    Google Scholar 

  • Kasischke ES, Christensen JL, Stocks BJ (1995) Fire, global warming, and the carbon balance of boreal forests. Ecological Applications 5:437–451

    Article  Google Scholar 

  • Keane RE, Finney MA (2003) The simulation of landscape fire, climate, and ecosystem dynamics. In: Veblen TT, Baker WL, Montenegro GT, Swetnam TW, editors. Fire and Global Change intemperate Ecosystems of the Western Americas. Springer-Verlag, New York, USA

    Google Scholar 

  • Keane RE, Long D, Basford D, Levesque BA (1997) Simulating vegetation dynamics across multiple scales to assess alternative management strategies. Pages 310–315 in Conference Proceedings — GIS 97, 11th Annual symposium on Geographic Information Systems — Integrating spatial information technologies for tomorrow. GIS World, INC., Vancouver, British Columbia, Canada

    Google Scholar 

  • Keane RE, Ryan KC, Finney MA (1998) Simulating the consequences of altered fire regimes on a complex landscape in Glacier National Park, USA. Tall Timbers Fire Ecology Conference 20:310–324

    Google Scholar 

  • Keane RE, Parsons R, Hessburg P (2002) Estimating historical range and variation of landscape patch dynamics: Limitations of the simulation approach. Ecological Modelling 151:29–49

    Article  Google Scholar 

  • Keane RE, Cary G, Davies ID, Flannigan MD, Gardner RH, Lavorel S, Lenihan JM, Li C, Rupp TS (2004) A classification of landscape fire succession models: spatially explicit models of fire and vegetation dynamics. Ecological Modelling 179(1):3–27

    Article  Google Scholar 

  • Knight DH (1987) Parasites, lightning, and the vegetation mosaic in wilderness landscapes. In: Turner MG (ed) Landscape heterogeneity and disturbance. Springer-Verlag, New York, USA, pp 59–83

    Google Scholar 

  • Lavorel S, Davies ID, Nobel IR (2000) LAMOS: a Landscape MOdelling Shell. Pages 25–28 in B. Hawkes and MD Flannigan, editors. Landscape fire modeling-challenges and opportunities. Natural Resources Canada, Canadian Forest Service, Vancouver, BC, Canada

    Google Scholar 

  • Lenihan JM, Daly C, Bachelet D, Neilson RP (1998) Simulating broad scale fire severity in a dynamic global vegetation model. Northwest Science 72:91–103

    Google Scholar 

  • Li C (2000) Reconstruction of natural fire regimes through ecological modelling. Ecological Modelling 134:129–144

    Article  Google Scholar 

  • Li C (2001) Fire disturbance patterns and forest age structure. Natural Resource Modeling 14:495–521

    Article  Google Scholar 

  • Matalas NC (1967) Mathematical assessment of synthetic hydrology. Water Resources Research 3, 937–45

    Google Scholar 

  • McArthur AG (1967) Fire behavior in eucalypt forests. Leaflet Number 107 Commonwealth of Australia Forestry and Timber Bureau. 16 p

    Google Scholar 

  • McCarthy MA, Cary GJ (2002) Fire regimes in landscapes: models and realities. Pages 77–94 in R Bradstock, J Williams, AM Gill, editors. Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD, Multivariate analysis of ecological data. Version 4. MjM Software Design, Gleneden Beach, Oregon, USA

    Google Scholar 

  • Neilson RP, Running SW (1996) Global dynamic vegetation modelling: coupling biogeochemistry and biogeography models. Pages 451–465 in Global change and terrestrial ecosystems. Cambridge University Press, New York, New York, USA

    Google Scholar 

  • Noble IR, Bary GAV, Gill AM (1980) McArthur’s fire-danger meters expressed as equations. Australian Journal of Ecology 5:201–203

    Article  Google Scholar 

  • Olsen J (1981) Carbon balance in relation to fire regimes. Pages 327–378 in HA Mooney, Bonnicksen TM, Christensen NL, Lotan JE, Reiners WA (Technical Coordinators), editor. Proceedings of the Conference Fire Regimes and Ecosystem Properties. USDA Forest Service. Washington Office Report WO-3

    Google Scholar 

  • Pausas JG, Austin MP, Noble IR (1997) A forest simulation model for predicting eucalypt dynamics and habitat quality for arboreal marsupials. Ecological Applications 7:921–933

    Article  Google Scholar 

  • Quinlan JR (2003) Data mining tools See5 and C5.0. RULEQUEST RESEARCH, St. Ives, NSW, Australia. www.rulequest.com/see5-info.html

    Google Scholar 

  • Raison RJ, Woods PV, Khanna PK (1986) Decomposition and accumulation of litter after fire in sub-alpine eucalypt forests. Australian Journal of Ecology 11, 9–19

    Article  Google Scholar 

  • Reinhardt ED, Keane RE, Brown JK (2001) Modeling fire effects. International Journal of Wildland Fire 10:373–380

    Article  Google Scholar 

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research 17:182–90

    Article  Google Scholar 

  • Roderick ML (1999) Estimating the diffuse component from daily and monthly measurements of global radiation. Agric For Meteorol 95:169–185

    Article  Google Scholar 

  • Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115, United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah. 56 pages

    Google Scholar 

  • Rupp TS, Keane RE, Lavorel S, Flannigan MD, Cary GJ (2001) Towards a classification of landscape fire succession models. GCTE News 17:1–4

    Google Scholar 

  • Ryan KC (1991) Vegetation and wildland fire: implications of global climate change. Environment International 17:169–178

    Article  Google Scholar 

  • Starfield AM, Chapin FS (1996) Model of transient changes in arctic and boreal vegetation in response to climate and land use change. Ecological Applications 6:842–864

    Article  Google Scholar 

  • Swanson FJ, Franklin JF, Sedell JR (1997) Landscape patterns, disturbance, and management in the Pacific Northwest, USA. In: Zonnneveld IS, Forman RTT (eds) Changing Landscapes: An Ecological Perspective. Springer-Verlag, New York, pp 191–213

    Google Scholar 

  • Swetnam TW (1997) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate 11:3128–3147

    Article  Google Scholar 

  • Swetnam TW, Baisan CH (1996) Historical fire regime patterns in the soutwestern United States since ad 1700. Pages 11–32 in CD Allen, editor. Fire effects in southwestern forests, Proceedings of the 2nd La Mesa Fire Symposium. Rocky Mountain Forest and Range Experiment Station, Forest Service, USDA

    Google Scholar 

  • Thonicke KS, Venevski S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography Letters 10:661–678

    Article  Google Scholar 

  • Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Forestry Technical Report No. 35. Ottawa: Canadian Forestry Service. 36 p

    Google Scholar 

  • Weber MG, Flannigan MD (1997) Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environmental Review 5:145–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keane, R.E. et al. (2007). Understanding Global Fire Dynamics by Classifying and Comparing Spatial Models of Vegetation and Fire. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_12

Download citation

Publish with us

Policies and ethics