Skip to main content

Tunguska (1908) and Its Relevance for Comet/Asteroid Impact Statistics

  • Chapter
Comet/Asteroid Impacts and Human Society

Abstract

Depending on distance from the event — at (101° 53′ 40″ E, 60° 53′ 09″ N) — the Siberian catastrophe of 30 June 1908 was reported as “cannon shots” (barisal guns, brontides: Gold and Soter 1979) and/or “storms” followed by “columns of fire”, also described as “lightning” and “thunderclaps”, after which an area of more than 2000 square kilometers, diameter some 50 km, had its trees debranched, felled, or their tops chopped off, varying with their distance from the center and/or height above the valleys, even with islands of tree survival near the center, and in the valleys. A few tents (tepees), barns (storage huts), and cattle (reindeer) were damaged, hurled aloft, and/or incinerated. The haunting took some ten minutes, variously reported between 2 min and an hour; one man even washed in the bath house to meet the death clean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez W (1997) T. rex, and the Crater of Doom. Penguin Books

    Google Scholar 

  • Atkinson H (2001) Risks to the Earth from impacts of asteroids and comets. Europhysics News 32(4): 126–129

    Article  ADS  Google Scholar 

  • Bronshten VA (2000) Nature and destruction of the Tunguska cosmical body. Planetary and Space Science 8:855–870

    Article  ADS  Google Scholar 

  • Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367:33–39

    Article  ADS  Google Scholar 

  • Dawson JB (1980) Kimberlites and their xenoliths. Springer, Berlin

    Google Scholar 

  • Docobo JA, Spalding RE, Ceplecha Z, Diaz-Fierros F, Tamazian V, Onda Y (1998) Investigation of a bright flying object over northwest Spain, 1994 January 18. Meteorites and Planetary Sciences 33:57–64

    Article  ADS  Google Scholar 

  • Farinella P, Foschini L, Froeschlé Ch, Gonczi R, Jopek TJ, Longo G, Michel P (2001) Probable asteroidal origin of the Tunguska cosmic body. A & A 377:1081–1097

    ADS  Google Scholar 

  • Foschini L (1999) A solution for the Tunguska event. A & A 342:L1–L4

    ADS  Google Scholar 

  • Foot R (2002) Shadowlands, quest for mirror matter in the universe, ISBN 1-58112-645-x; also: astro-ph/0407623

    Google Scholar 

  • Gallant RA (1994) Journey to Tunguska. Sky and Telescope 87:38–43

    ADS  Google Scholar 

  • Gold T (1999) The deep hot biosphere. Springer, New York

    Google Scholar 

  • Gold T, Soter S (1979) Brontides: natural explosive noises. Science 204(4391):371–375

    Article  ADS  Google Scholar 

  • Haggerty SE (1994) Superkimberlites: a geodynamic diamond window to the Earth’s core. Earth and Planetary Science 122:L57–L69

    Article  ADS  Google Scholar 

  • Hou QL, Kolesnikov EM, Xie LW, Kolesnikova NV, Zhou MF, Sun M (2004) Platinum group element abundances in a peat layer associated with the Tunguska event, further evidence for a cosmic origin. Planetary and Space Science 52:331–340, 773

    Article  ADS  Google Scholar 

  • Jerebchenko IP (2003) Geological and geophysical aspects of the Tunguska phenomenon. In: Theses of the jubilee scientific conference “95 years of the Tunguska problem 1908–2003”, Moscow. GAIsh, June 24–25, 2003. The Moscow State University Publishing, pp 96–97

    Google Scholar 

  • Jewitt D (2000) Eyes wide shut. Nature 403:145–147

    Article  ADS  Google Scholar 

  • Kochemasov GG (2001) On probable terrestrial origin of the 1908 Tunguska explosion. In: Reports of the jubilee international conference “90 years of the Tunguska problem”, June 30–July 2, 1948, Krasnoyarsk, pp 208–212

    Google Scholar 

  • Kolesnikov EM, Boettger T, Kolesnikova NV (1999) Finding of probable Tunguska cosmic body material: isotopic anomalies of carbon and hydrogen in peat. Planetary and Space Sci 47:905–916

    Article  ADS  Google Scholar 

  • Krinov EL (1966) Giant Meteorites. Pergamon, pp 125–265

    Google Scholar 

  • Kundt W (1991) Earth as an Object of Physical Research. In: Latif M (ed) Strategies for future climate research. Klaus Hasselmann’s 60th anniversary, Hamburg, pp 375–383

    Google Scholar 

  • Kundt W (2001) The 1908 Tunguska catastrophe: an alternative explanation. Current Science 81:399–407

    Google Scholar 

  • Kundt W (2002) Risks to the Earth from impacts of asteroids and comets. Europhysics News 33(2):65–66

    Google Scholar 

  • Kundt W, Jessner A (1986) Volcanoes, fountains, earth quakes, and continental motion — what causes them? Journal of Geophysics 60:33–40

    Google Scholar 

  • Longo G, Serra R, Cecchini S, Galli M (1994) Search for microremnants of the Tunguska cosmic body. Planetary and Space Science 42(2):163–177

    Article  ADS  Google Scholar 

  • May DA, Monaghan JJ (2003) Can a single bubble sink a ship? American J of Physics 71(9):842–849

    Article  ADS  Google Scholar 

  • Melosh HJ (1997) Multi-ringed revelation. Nature 390:439–440

    Article  ADS  Google Scholar 

  • Ol’khovatov AYu (1999) The tectonic interpretaion of the 1908 Tunguska event. Internet: www.geocities.com/CapeCanaveral/Cockpit/3240

    Google Scholar 

  • Ol’khovatov AYu (2003) Geophysical circumstances of the 1908 Tunguska event in Siberia, Russia. Earth, Moon and Planets 93:163–173

    Article  ADS  Google Scholar 

  • Rabinowitz D, Helin E, Lawrence K, Pravdo S (2000) A reduced estimate of the number of kilometresized near-Earth asteroids. Nature 403:165–166

    Article  ADS  Google Scholar 

  • Serra R, Cecchini S, Galli M, Longo G (1994) Experimental hints on the fragmentation of the Tunguska cosmic body. Planetary and Space Sciences 42:777–783

    Article  ADS  Google Scholar 

  • Svetsov VV (1996) Total ablation of the debris from the 1908 Tunguska explosion. Nature 383:697–699

    Article  ADS  Google Scholar 

  • Shoemaker E (1983) Asteroid and comet bombardment of the Earth. Ann Rev Earth Planet Sci 11:461–494

    Article  ADS  Google Scholar 

  • Vasilyev NV (1998) The Tunguska Meteorite problem today. Planetary and Space Science 46:129–143

    Article  ADS  Google Scholar 

  • Walker DA (1985) Kaitoku Seamount and the mystery cloud of 9 April 1984. Science 227:607–611

    Article  ADS  Google Scholar 

  • Yepifanov V (2002) Degassing of the Earth. In: Conference of the Russian Academy of Sciences, Moscow

    Google Scholar 

  • Zahnle K (1996) Leaving no stone unburnt. Nature 383:674

    Article  ADS  Google Scholar 

  • Zotkin IF, Tsikulin MA (1966) Modelling of the Tunguska meteorite explosion. Doklady AN SSSR 167: 59–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kundt, W. (2007). Tunguska (1908) and Its Relevance for Comet/Asteroid Impact Statistics. In: Bobrowsky, P.T., Rickman, H. (eds) Comet/Asteroid Impacts and Human Society. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32711-0_19

Download citation

Publish with us

Policies and ethics