Skip to main content

Advances in Monte Carlo Simulations of Nanostructured Materials

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XVIII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 105))

  • 510 Accesses

Abstract

We discuss the application of novel Monte Carlo simulations to the study of nanostructured materials. Emphasis is given on interfacial properties and processes related to strain, disorder, and alloying. Two representative systems are investigated. We first apply a quasiequilibrium method to unravel the composition profiles in Ge islands formed on Si(100). We show that under near-equilibrium conditions the profile is largely dictated by the stress field in the interior of the islands and the tendency of Ge to segregate to the surface. The second problem discussed here is a composite system of Si nanocrystals embedded in a-SiO2. By constructing realistic structural models and applying an efficient bond-switching algorithm, we obtain the equilibrium structure of the interface, and investigate its energetics, stability and disorder as a function of the nanocrystal size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Sonnet, P.C. Kelires: Phys. Rev. B 66, 205307 (2002)

    Article  ADS  Google Scholar 

  2. G.C. Hadjisavvas, P. Sonnet, P.C. Kelires: Phys. Rev. B 67, 241302(R) (2003)

    Google Scholar 

  3. P. Sonnet, P.C. Kelires: Appl. Phys. Lett. 85, 203 (2004)

    Article  ADS  Google Scholar 

  4. G.C. Hadjisavvas, P.C. Kelires: Phys. Rev. Lett. 93, 226104 (2004)

    Article  ADS  Google Scholar 

  5. J. Stangl, V. Holy, G. Bauer: Rev. Mod. Phys. 76, 725 (2004)

    Article  ADS  Google Scholar 

  6. J. Tersoff, R.M. Tromp: Phys. Rev. Lett. 70, 2782 (1993); J. Tersoff and F.K. LeGoues: ibid. 72, 3570 (1994)

    Article  ADS  Google Scholar 

  7. A. Barabási: Appl. Phys. Lett. 70, 2565 (1997)

    Article  ADS  Google Scholar 

  8. J. Tersoff, C. Teichert, M.G. Lagally: Phys. Rev. Lett. 76, 1675 (1996)

    Article  ADS  Google Scholar 

  9. F.M. Ross, J. Tersoff, R.M. Tromp: Phys. Rev. Lett. 80, 984 (1998)

    Article  ADS  Google Scholar 

  10. W. Yu, A. Madhukar: Phys. Rev. Lett. 79, 905 (1997)

    Article  ADS  Google Scholar 

  11. P. Raiteri, L. Miglio, F. Valentinotti, M. Celino: Appl. Phys. Lett. 80, 3736 (2002)

    Article  ADS  Google Scholar 

  12. N. Liu, J. Tersoff, O. Baklenov, A.L. Holmes, C.K. Shih: Phys. Rev. Lett. 84, 334 (2000)

    Article  ADS  Google Scholar 

  13. K. Nakajima, A. Konishi, K. Kimura: Phys. Rev. Lett. 83, 1802 (1999)

    Article  ADS  Google Scholar 

  14. U. Denker, M. Stoffel, O.G. Schmidt: Phys. Rev. Lett. 90, 196102 (2003)

    Article  ADS  Google Scholar 

  15. T.U. Schülli, J. Stangl, Z. Zhong, R.T. Lechner, M. Sztucki, T.H. Metzger, G. Bauer: Phys. Rev. Lett. 90, 066105 (2003)

    Article  ADS  Google Scholar 

  16. A. Malachias, S. Kycia, G. Medeiros-Ribeiro, R. Magalhaes-Paniago, T.I. Kamins, R.S. Williams: Phys. Rev. Lett. 91, 176101 (2003)

    Article  ADS  Google Scholar 

  17. F. Ratto, F. Rosei, A. Locatelli, S. Cherifi, S. Fontana, S. Heun, P. Szkutnik, A. Sgarlata, M. De Crescenzi, N. Motta: Appl. Phys. Lett. 84, 4526 (2004)

    Article  ADS  Google Scholar 

  18. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo: Nature (London) 408, 440 (2000)

    Article  ADS  Google Scholar 

  19. N. Daldosso et al.: Phys. Rev. B 68, 085327 (2003)

    Article  ADS  Google Scholar 

  20. J.P. Proot, C. Delerue, G. Allan: Appl. Phys. Lett. 61, 1948 (1992)

    Article  ADS  Google Scholar 

  21. L.W. Wang, A. Zunger: J. Phys. Chem. 98, 2158 (1994)

    Article  Google Scholar 

  22. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue: Phys. Rev. Lett. 82, 197 (1999)

    Article  ADS  Google Scholar 

  23. A. Puzder, A.J. Williamson, J.C. Grossman, G. Galli: Phys. Rev. Lett. 88, 097401 (2002)

    Article  ADS  Google Scholar 

  24. I. Vasiliev, J.R. Chelikowsky, R. Martin: Phys. Rev. B 65, 121302(R) (2002)

    Google Scholar 

  25. P.C. Kelires, J. Tersoff: Phys. Rev. Lett. 63, 1164 (1989); P.C. Kelires: ibid. 75, 1114 (1995)

    Article  ADS  Google Scholar 

  26. P.C. Kelires: J. Phys. Condens. Matter 16, S1485 (2004)

    Article  ADS  Google Scholar 

  27. J. Tersoff: Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  28. F. Stillinger, T. Weber: Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  29. P.C. Kelires: Phys. Rev. B 49, 11496(R) (1994)

    Google Scholar 

  30. Y.W. Mo, D.E. Savage, B.S. Swartzentruber, M.G. Lagally: Phys. Rev. Lett. 65, 1020 (1990)

    Article  ADS  Google Scholar 

  31. K.O. Ng, D. Vanderbilt: Phys. Rev. B 59, 10132 (1999)

    Article  ADS  Google Scholar 

  32. Y. Tu, J. Tersoff: Phys. Rev. Lett. 84, 4393 (2000); ibid. 89, 086102 (2002)

    Article  ADS  Google Scholar 

  33. D.R. Hamann: Phys. Rev. B 61, 9899 (2000)

    Article  ADS  Google Scholar 

  34. F. Wooten, K. Winer, D. Weaire: Phys. Rev. Lett. 54, 1392 (1985)

    Article  ADS  Google Scholar 

  35. S.A. Chaparro, J. Drucker, Y. Zhang, D. Chandrasekhar, M.R. McCartney, D.J. Smith: Phys. Rev. Lett. 83, 1199 (1999)

    Article  ADS  Google Scholar 

  36. C. Lang, D. Nguyen-Manh, D.J.H. Cockayne: J. Appl. Phys. 94, 7067 (2003)

    Article  ADS  Google Scholar 

  37. R. Buczko, S.J. Pennycook, S.T. Pantelides: Phys. Rev. Lett. 84, 943 (2000)

    Article  ADS  Google Scholar 

  38. J.H. Oh et al.: Phys. Rev. B 63, 205310 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hadjisavvas, G.C., Kelires, P.C. (2007). Advances in Monte Carlo Simulations of Nanostructured Materials. In: Landau, D.P., Lewis, S.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XVIII. Springer Proceedings in Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32640-3_8

Download citation

Publish with us

Policies and ethics