Skip to main content

Quantum World-line Monte Carlo Method with Non-binary Loops and Its Application

  • Conference paper
  • 493 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 105))

Abstract

A quantum world-line Monte Carlo method for high-symmetrical quantum models is proposed. Firstly, based on a representation of a partition function using the Matsubara formula, the principle of quantum world-line Monte Carlo methods is briefly outlined and a new algorithm using non-binary loops is given for quantum models with high symmetry as SU(N). The algorithm is called non-binary loop algorithm because of non-binary loop updatings. Secondary, one example of our numerical studies using the non-binary loop updating is shown. It is the problem of the ground state of two-dimensional SU(N) anti-ferromagnets. Our numerical study confirms that the ground state in the small N( 4) case is a magnetic ordered Neel state, but the one in the large N( 5) case has no magnetic order, and it becomes a dimer state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Suzuki: Prog. Theor. Phys. 56, 1454 (1976)

    Article  MATH  ADS  Google Scholar 

  2. H.G. Evertz, G. Lana, M. Marcu: Phys. Rev. Lett. 70, 875 (1993)

    Article  ADS  Google Scholar 

  3. H.G. Evertz: Advances in Physics 52, 1 (2003)

    Article  ADS  Google Scholar 

  4. N. Kawashima, K. Harada: J. Phys. Soc. Jpn. 73, 1379 (2004)

    Article  MATH  ADS  Google Scholar 

  5. N. Kawashima, J.E. Gubernatis: Phys. Rev. Lett. 73, 1295 (1994)

    Article  ADS  Google Scholar 

  6. For physical results on this model, see, for example, A. Schmitt, K-H. Mütter, M. Karbach, Y. Yu, G. Müller: Phys. Rev. B 58, 5498 (1998), and references cited therein; also see K. Nomura, S. Takada: J. Phys. Soc. Jpn. 60, 389 (1991)

    Article  ADS  Google Scholar 

  7. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch: Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  8. N. Read, S. Sachdev: Phys. Rev. B 42, 4568 (1990)

    Article  ADS  Google Scholar 

  9. I. Affleck: Phys. Rev. Lett. 54, 966 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Santoro, S. Sorella, L. Guidoni, A. Parola, E. Tosatti: Phys. Rev. Lett. 83, 3065 (1999)

    Article  ADS  Google Scholar 

  11. K. Harada, N. Kawashima: Phys. Rev. Lett. 90, 117203 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harada, K. (2007). Quantum World-line Monte Carlo Method with Non-binary Loops and Its Application. In: Landau, D.P., Lewis, S.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XVIII. Springer Proceedings in Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32640-3_3

Download citation

Publish with us

Policies and ethics