Skip to main content

A Unifying Generalization of Sperner’s Theorem

  • Chapter
More Sets, Graphs and Numbers

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 15))

Abstract

Sperner’s bound on the size of an antichain in the lattice P(S) of subsets of a finite set S has been generalized in three different directions: by Erdős to subsets of P(S) in which chains contain at most r elements; by Meshalkin to certain classes of compositions of S; by Griggs, Stahl, and Trotter through replacing the antichains by certain sets of pairs of disjoint elements of P(S). We unify these three bounds with a common generalization. We similarly unify their accompanying LYM inequalities. Our bounds do not in general appear to be the best possible.

Research supported by National Science Foundation grant DMS-0070729.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Anderson, Combinatorics of Finite Sets, Clarendon Press, Oxford, 1987.

    MATH  Google Scholar 

  2. M. Beck and T. Zaslavsky, A shorter, simpler, stronger proof of the Meshalkin-Hochberg-Hirsch bounds on componentwise antichains, J. Combin. Theory Ser. A, 100 (2002), 196–199.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Bollobás, On generalized graphs. Acta Math. Acad. Sci. Hung., 16 (1965), 447–452.

    Article  MATH  Google Scholar 

  4. P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51 (1945), 898–902.

    Article  MathSciNet  Google Scholar 

  5. J. R. Griggs, J. Stahl and W. T. Trotter, A Sperner theorem on unrelated chains of subsets, J. Combinatorial Theory Ser. A, 36 (1984), 124–127.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Hochberg and W. M. Hirsch, Sperner families, s-systems, and a theorem of Meshalkin, Ann. New York Acad. Sci., 175 (1970), 224–237.

    MATH  MathSciNet  Google Scholar 

  7. D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge University Press, Cambridge, Eng., 1997.

    MATH  Google Scholar 

  8. D. A. Lubell, A short proof of Sperner’s theorem, J. Combinatorial Theory, 1 (1966), 209–214.

    Article  MathSciNet  Google Scholar 

  9. L. D. Meshalkin, Generalization of Sperner’s theorem on the number of subsets of a finite set (in Russian), Teor. Verojatnost. i Primenen, 8 (1963), 219–220. English trans.: Theor. Probability Appl., 8 (1963), 203–204.

    MathSciNet  Google Scholar 

  10. G.-C. Rota and L. H. Harper, Matching theory, an introduction, in: P. Ney, ed., Advances in Probability and Related Topics, Vol. 1, pp. 169–215, Marcel Dekker, New York, 1971.

    Google Scholar 

  11. E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z., 27 (1928), 544–548.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Yamamoto, Logarithmic order of free distributive lattice, J. Math. Soc. Japan, 6 (1954), 343–353.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memories of Pál Erdős and Lev Meshalkin

Rights and permissions

Reprints and permissions

Copyright information

© 2006 János Bolyai Mathematical Society and Springer Verlag

About this chapter

Cite this chapter

Beck, M., Wang, X., Zaslavsky, T. (2006). A Unifying Generalization of Sperner’s Theorem. In: Győri, E., Katona, G.O.H., Lovász, L., Fleiner, T. (eds) More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32439-3_1

Download citation

Publish with us

Policies and ethics