Skip to main content

Learning Regulatory Network Models that Represent Regulator States and Roles

  • Conference paper
Book cover Regulatory Genomics (RRG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3318))

Included in the following conference series:

Abstract

We present an approach to inferring probabilistic models of gene-regulatory networks that is intended to provide a more mechanistic representation of transcriptional regulation than previous methods. Our approach involves learning Bayesian network models using both gene-expression and genomic-sequence data. One key aspect of our approach is that our models represent states of regulators in addition to their expression levels. For example, the state of a transcription factor may be determined by whether a particular small molecule is bound to it or not. Our models represent these states using hidden nodes in the Bayesian networks. A second key aspect of our approach is that we use known and predicted transcription start sites to determine whether a given transcription factor is more likely to act as an activator or a repressor for a given gene. We refer to this distinction as the role of a regulator with respect to a gene. Determining the roles of a regulator provides a helpful bias in learning accurate representations of regulator states. We evaluate our approach using sequence and expression data for E. coli K-12. Our experiments show that our models are comparable to, or better than, several baselines in terms of predictive accuracy. Moreover, they have more explanatory power than either baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)

    Article  Google Scholar 

  2. King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., Oliver, S.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  3. Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., Shao, Y.: The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997)

    Article  Google Scholar 

  4. Friedman, N., Linial, M., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  5. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Proceedings of the Fifth Pacific Symposium on Biocomputing, Kohala Coast, HI, pp. 422–433. World Scientific Press, Singapore (2001)

    Google Scholar 

  6. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Combining location and expression data for principled discovery of genetic regulatory networks. In: Proceedings of the Fifth Pacific Symposium on Biocomputing, Lihue, HI, pp. 437–449. World Scientific Press, Singapore (2002)

    Google Scholar 

  7. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from peturbed expression profiles. Bioinformatics 17, S215–S224 (2001)

    Google Scholar 

  8. Segal, E., Yelensky, R., Koller, D.: Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 19, i273–i282 (2003)

    Article  Google Scholar 

  9. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34, 166–176 (2003)

    Article  Google Scholar 

  10. Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19, ii227–ii236 (2003)

    Article  Google Scholar 

  11. Yoo, C., Cooper, G.: Discovery of gene-regulation pathways using local causal search. In: Proceedings of the Annual Fall Symposium of the American Medical Informatics Association, pp. 914–918 (2002)

    Google Scholar 

  12. Yoo, C., Thorsson, V., Cooper, G.: Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. In: Proceedings of the Fifth Pacific Symposium on Biocomputing, Lihue, HI, pp. 498–509. World Scientific Press, Singapore (2002)

    Google Scholar 

  13. Ong, I., Glasner, J., Page, D.: Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18, S241–S248 (2002)

    Google Scholar 

  14. Pearl, J.: Probabalistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  15. Bockhorst, J., Qiu, Y., Glasner, J., Liu, M., Blattner, F., Craven, M.: Predicting bacterial transcription units using sequence and expression data. Bioinformatics 19, i34–i43 (2003)

    Article  Google Scholar 

  16. Xing, E., Jordan, M., Karp, R.: Feature selection for high-dimensional genomic microarray data. In: Proceedings of the Eighteenth International Conference on Machine Learning (2001)

    Google Scholar 

  17. D’Ambrosio, B.: Inference in Bayesian networks. AI Magazine 20, 21–36 (1999)

    Google Scholar 

  18. Mehta, M., Rissanen, J., Agrawal, R.: MDL-based decision tree pruning. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining, pp. 216–221. AAAI Press, Menlo Park (1995)

    Google Scholar 

  19. Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H., Ohnhäuser, R., Prüß, M., Schacherer, F., Thiele, S., Urbach, S.: The TRANSFAC system on gene expression regulation. Nucleic Acids Research 29, 281–283 (2001)

    Article  Google Scholar 

  20. Karp, P., Riley, M., Saier, M., Paulsen, I., Collado-Vides, J., Paley, S., Pellegrini-Toole, A., Bonavides, C., Gama-Castro, S.: The EcoCyc database. Nucleic Acids Research 30, 56–58 (2002)

    Article  Google Scholar 

  21. McCue, L.A., Thompson, W., Carmack, C.S., Lawrence, C.: Factors influencing the identification or transcription factor binding sites by cross-species comparison. Genome Research 12, 1523–1532 (2002)

    Article  Google Scholar 

  22. Glasner, J., Liss, P., Plunkett III, G., Darling, A., Prasad, T., Rusch, M., Byrnes, A., Gilson, M., Biehl, B., Blattner, F., Perna, N.: ASAP, a systematic annotation package for community analysis of genomes. Nucleic Acids Research 31, 147–151 (2003)

    Article  Google Scholar 

  23. Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, K., Scherf, U., Speed, T.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2002)

    Article  Google Scholar 

  24. Nudler, E., Mironov, A.: The riboswitch control of bacterial metabolism. Trends in Biochemical Sciences 29, 11–17 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noto, K., Craven, M. (2005). Learning Regulatory Network Models that Represent Regulator States and Roles. In: Eskin, E., Workman, C. (eds) Regulatory Genomics. RRG 2004. Lecture Notes in Computer Science(), vol 3318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32280-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32280-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24456-1

  • Online ISBN: 978-3-540-32280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics