Skip to main content

Abstract Model Generation for Preprocessing Clause Sets

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3452))

  • 521 Accesses

Abstract

Abstract model generation refers to model generation for abstract clause sets in which arguments of atoms are ignored. We give two abstract clause sets which are obtained from normal clause sets. One is for checking satisfiability of the original normal clause set. Another is used for eliminating unnecessary clauses from the original one. These abstract clause sets are propositional, i.e. decidable. Thus, we can use them for preprocessing the original one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bry, F., Yahya, A.: Positive Unit Hyperresolution Tableaux and Their Application to Minimal Model Generation. Journal of Automated Reasoning 25, 35–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fuchs, M., Fuchs, D.: Abstraction-Based Relevancy Testing for Model Elimination. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 344–358. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 57, 323–389 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Knoblock, C.A., Tenenberg, J.D., Yang, Q.: Characterizing Abstraction Hierarchies for Planing. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 692–697. AAAI Press, Menlo Park (1991)

    Google Scholar 

  5. Koshimura, M., Hasegawa, R.: Proof Simplification for Model Generation and Its Applications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 96–113. Springer, Heidelberg (2000)

    Google Scholar 

  6. Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  7. Plaisted, D.A.: Theorem Proving with Abstraction. Artificial Intelligence 16, 47–108 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Plaisted, D.A., Yahya, A.: A relevance restriction strategy for automated deduction. Artificial Intelligence 144, 59–93 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communications 15(2), 91–110 (2002)

    MATH  Google Scholar 

  10. Sacerdoti, E.D.: Planning in a Hierarchy of Abstraction Spaces. Artificial Intelligence 5, 115–135 (1974)

    Article  MATH  Google Scholar 

  11. Schulz, S.: E - a brainiac theorem prover. AI Communications 15(2), 111–126 (2002)

    MATH  Google Scholar 

  12. Stenz, G.: DCTP 1.2 - System Abstract. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 335–340. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library for Automated Theorem Proving (2004), http://www.cs.miami.edu/~tptp/

  15. Sutcliffe, G., Melville, S.: The Practice of Clausification in Automatic Theorem Proving. South African Computer Journal 18, 57–68 (1996)

    Google Scholar 

  16. Sutcliffe, G., Suttner, C.: The CADE ATP System Competition. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 490–491. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Zhou, N.-F.: B-Prolog User’s Manual (Version 6.6) (2004), http://www.probp.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koshimura, M., Umeda, M., Hasegawa, R. (2005). Abstract Model Generation for Preprocessing Clause Sets. In: Baader, F., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32275-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32275-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25236-8

  • Online ISBN: 978-3-540-32275-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics