Skip to main content

Abstract DPLL and Abstract DPLL Modulo Theories

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005)

Abstract

We introduce Abstract DPLL, a general and simple abstract rule-based formulation of the Davis-Putnam-Logemann-Loveland (DPLL) procedure. Its properties, such as soundness, completeness or termination, immediately carry over to the modern DPLL implementations with features such as non-chronological backtracking or clause learning. This allows one to formally reason about practical DPLL algorithms in a simple way. In the second part of this paper we extend the framework to Abstract DPLL modulo theories. This allows us to express—and formally reason about—state-of-the-art concrete DPLL-based techniques for satisfiability modulo background theories, such as the different lazy approaches, or our DPLL(T) framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)

    Google Scholar 

  2. Armando, A., Castellini, C., Giunchiglia, E.: SATbased procedures for temporal reasoning. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 97–108. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Barrett, C.W., Berezin, S.: CVC lite: A new implementation of the cooperating validity checker. Category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Barrett, C., Dill, D., Stump, A.: Checking satisfiability of first-order formulas by incremental translation into sat. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 236. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm. of the ACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Procs. 5th Int. Symp. on the Theory and Applications of Satisfiability Testing, SAT 2002, pp. 244–251 (2002)

    Google Scholar 

  7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explanation. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Design, Automation, and Test in Europe (DATE 2002), pp. 142–149 (2002)

    Google Scholar 

  11. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proc. 38th Design Automation Conference (DAC 2001) (2001)

    Google Scholar 

  12. Marques-Silva, J., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521

    Google Scholar 

  13. Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 308–319. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nieuwenhuis, R., Oliveras, A., Tinelli, C. (2005). Abstract DPLL and Abstract DPLL Modulo Theories. In: Baader, F., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32275-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32275-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25236-8

  • Online ISBN: 978-3-540-32275-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics