Evolving Strategies for Agents in the Iterated Prisoner’s Dilemma in Noisy Environments

  • Colm O’Riordan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3394)


In this paper, we discuss the co-evolution of agents in a multi-agent system where agents interact with each other. These interactions are modelled in an abstract manner using ideas from game theory. This paper focuses on the iterated prisoner’s dilemma (IPD). We discuss properties that we believe to be of importance with respect to fitness of strategies in traditional environments and also in environments where noise is present. Specifically, we discuss the notion of forgiveness, where strategies attempt to forgive strategies that defect in the game, with the aim of increasing the level of cooperation present. We study these strategies by using evolutionary computation which provides a powerful means to search the large range of strategies’ features.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)Google Scholar
  2. 2.
    Axelrod, R., D’Ambrosio, L.: An annotated bibliography on the evolution of cooperation (October 1994),
  3. 3.
    Beaufils, B., Mathieu, P., Delahaye, J.-P.: Complete classes of strategies for the classical iterated prisoner’s dilemma. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 33–41. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Bendor, J., Kramer, R.M., Stout, S.: When in doubt cooperation in a noisy prisoner’s dilemma. Journal of Conflict Resolution 35(4), 691–719 (1991)CrossRefGoogle Scholar
  5. 5.
    Chong, S.Y., Yao, X.: The impact of noise on iterated prisoner’s dilemma with multiple levels of cooperation. In: Proceedings of the 2004 Congress on Evolutionary Computation (CEC 2004), pp. 348–355 (2004)Google Scholar
  6. 6.
    Cohen, M.D., Riolo, R.L., Axelrod, R.: The emergence of social organization in the prisoner’s dilemma: How context-preservation and other factors promote cooperation. Technical report, SantaFe Institute (1999)Google Scholar
  7. 7.
    Darwen, P., Yao, X.: Co-evolution in iterated prisoner’s dilemma with intermediate levels of cooperation: Application to missile defense. International Journal of Computational Intelligence and Applications 2(1), 83–107 (2002)CrossRefGoogle Scholar
  8. 8.
    Fudenberg, D., Maskin, E.: Evolution and cooperation in noisy repeated games. The American Economic Review 80(2), 179–274 (1990)Google Scholar
  9. 9.
    Harrald, P., Fogel, D.: Evolving continuous behaviours in the iterated prisoner’s dilemma. Biosystems 37, 135–145 (1996)CrossRefGoogle Scholar
  10. 10.
    Hoffman, R.: Twenty years on: The evolution of cooperation revisited. Journal of Artificial Societies and Simulation 3(2) (2000)Google Scholar
  11. 11.
    Kahn, L.M., Murnighan, J.K.: Conjecture, uncertainty, and cooperation in prisoner’s dilemma games: Some experimental evidence. Journal of Economic Behaviour & Organisation 22, 91–117 (1993)CrossRefGoogle Scholar
  12. 12.
    Miller, J.H.: The coevolution of automata in the repeated prisoner’s dilemma. Journal of Economic Behaviour & Organisation 29, 87–112 (1996)CrossRefGoogle Scholar
  13. 13.
    Mueller, U.: Optimal retaliation for optimal cooperation. Journal of Conflict Resolution 31(4), 692–724 (1988)CrossRefMathSciNetGoogle Scholar
  14. 14.
    O’Riordan, C.: A forgiving strategy for the iterated prisoner’s dilemma. Journal of Artificial Societies and Social Simulation 3(4) (2000)Google Scholar
  15. 15.
    O’Riordan, C.: Forgiveness in the iterated prisoner’s dilemma and cooperation in multi-agent systems. In: UKMAS-4 (December 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Colm O’Riordan
    • 1
  1. 1.Dept. of Information TechnologyNational University of IrelandGalwayIreland

Personalised recommendations