A New Omnidirectional Vision Sensor for Monte-Carlo Localization

  • E. Menegatti
  • A. Pretto
  • E. Pagello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)


In this paper, we present a new approach for omnidirectional vision-based self-localization in the RoboCup Middle-Size League. The omnidirectional vision sensor is used as a range finder (like a laser or a sonar) sensitive to colors transitions instead of nearest obstacles. This makes it possible to have a more reach information about the environment, because it is possible to discriminate between different objects painted in different colors. We implemented a Monte-Carlo localization system slightly adapted to this new type of range sensor. The system runs in real time on a low-cost pc. Experiments demonstrated the robustness of the approach. Event if the system was implemented and tested in the RoboCup Middle-Size field, the system could be used in other environments.


Mobile Robot Vision Sensor Sensor Model Robot Position Color Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: Proc. of the IEEE International Conference on Robotics & Automation (1999)Google Scholar
  2. 2.
    Dempster, P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39 of B, 1–38 (1977)MathSciNetGoogle Scholar
  3. 3.
    Enderle, S., Ritter, M., Fox, D., Sablatng, S., Kraetzschmar, G., Palm, G.: Soccerrobot locatization using sporadic visual features. In: Pagello, E., Groen, F., Arai, T., Dillman, R., Stentz, A. (eds.) Proceedings of the 6th International Conference on Intelligent Autonomous Systems (IAS-6). IOS Press, Amsterdam (2000)Google Scholar
  4. 4.
    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: Efficient position estimation for mobile robots. In: Proc. of the National Conferenceon Artificial Intelligence (1999)Google Scholar
  5. 5.
    Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research 11 (1999)Google Scholar
  6. 6.
    Menegatti, E., Nori, F., Pagello, E., Pellizzari, C., Spagnoli, D.: Designing an omnidirectional vision system for a goalkeeper robot. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup-2001: Robot Soccer World Cup V, pp. 78–87. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Menegatti, E., Pretto, A., Pagello, E.: Testing omnidirectional vision-based Monte- Carlo Localization under occlusion. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan (September 2004) (to appear)Google Scholar
  8. 8.
    Menegatti, E., Zoccarato, M., Pagello, E., Ishiguro, H.: Hierarchical image-based localisation for mobile robots with monte-carlo localisation. In: Proc. of European Conference on Mobile Robots (ECMR 2003), pp. 13–20 (September 2003)Google Scholar
  9. 9.
    Menegatti, E., Zoccarato, M., Pagello, E., Ishiguro, H.: Image-based monte-carlo localisation with omnidirectional images. In: Robotics and Autonomous Systems. Elsevier, Amsterdam (2004) (to appear)Google Scholar
  10. 10.
    Röfer, T., Jüngel, M.: Vision-based fast and reactive monte-carlo localization. In: IEEE International Conference on Robotics and Automation (2003)Google Scholar
  11. 11.
    Rofer, T., Jungel, M.: Vision-based fast and reactive monte-carlo localization. In: Proc. of International Conference on Robotics and Automation, ICRA 2003 (2003)Google Scholar
  12. 12.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2000)CrossRefGoogle Scholar
  13. 13.
    Weigel, T., Gutmann, J.-S., Dietl, M., Kleiner, A., Nebel, B.: Cs freiburg: Coordinating robots for successful soccer playing. IEEE Transactions on Robotics and Automation 18(5), 685–699 (2002); Arai, T., Pagello, E., Parker, L. (eds.)CrossRefGoogle Scholar
  14. 14.
    Wolf, J., Burgard, W., Burkhardt, H.: Using an image retrieval system for vision-based mobile robot localization. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, p. 108. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. Menegatti
    • 1
  • A. Pretto
    • 1
  • E. Pagello
    • 1
    • 2
  1. 1.Intelligent Autonomous Systems Laboratory, Department of Information EngineeringThe University of PaduaItaly
  2. 2.Institute ISIB of CNR PaduaItaly

Personalised recommendations