Advertisement

Cooperative Planning and Plan Execution in Partially Observable Dynamic Domains

  • Gordon Fraser
  • Franz Wotawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)

Abstract

In this paper we focus on plan execution in highly dynamic environments. Our plan execution procedure is part of a high-level planning system which controls the actions of our RoboCup team ”Mostly Harmless”. The used knowledge representation scheme is based on traditional STRIPS planning and qualitative reasoning principles. In contrast to other plan execution algorithms we introduce the concept of plan invariants which have to be fulfilled during the whole plan execution cycle. Plan invariants aid robots in detecting problems as early as possible. Moreover, we demonstrate how the approach can be used to achieve cooperative behavior.

References

  1. 1.
    Brooks, R.A.: Intelligence Without Reason. In: Myopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), Sydney, Australia, pp. 569–595. Morgan Kaufmann publishers Inc., San Mateo (1991)Google Scholar
  2. 2.
    Bylander, T.: The Computational Complexity of Propositional STRIPS Planning. Artificial Intelligence 69, 165–204 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: The Robot World Cup Initiative. In: Johnson, W.L., Hayes-Roth, B. (eds.) Proceedings of the First International Conference on Autonomous Agents (Agents 1997), pp. 340–347. ACM Press, New York (1997)CrossRefGoogle Scholar
  4. 4.
    Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence 2, 189–208 (1972)CrossRefGoogle Scholar
  5. 5.
    Kleiner, A., Buchheim, T.: A Plugin-Based Architecture For Simulatio. In: The F2000 League (2003)Google Scholar
  6. 6.
    Kautz, H.A., Selman, B.: The Role of Domain-Specific Knowledge in the Planning as Satisfiability Framework. Artificial Intelligence Planning Systems, 181–189 (1998)Google Scholar
  7. 7.
    Collins, G., Pryor, L.: Planning under uncertainty: Some key issues. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1567–1573 (1995)Google Scholar
  8. 8.
    Weld, D., de Kleer, J. (eds.): Readings in Qualitative Reasoning about Physical Systems. Morgan Kaufmann, San Francisco (1989)Google Scholar
  9. 9.
    Castelpietra, C., Iocchi, L., Nardi, D., Piaggio, M., Scalzo, A., Sgorbissa, A.: Communication and Coordination among Heterogeneous Mid-size Players: ART 1999. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 86–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Weigel, T., Auerbach, W., Dietl, M., Dümler, B., Gutmann, J.S., Marko, K., Müller, K., Nebel, B., Szerbakowski, B., Thiel, M.: CS Freiburg: Doing the Right Thing in a Group. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, p. 52. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gordon Fraser
    • 1
  • Franz Wotawa
    • 1
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations