Navigation Controllability of a Mobile Robot Population

  • Francisco A. Melo
  • M. Isabel Ribeiro
  • Pedro Lima
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)


In this paper, the problem of determining if a population of mobile robots is able to travel from an initial configuration to a target configuration is addressed. This problem is related with the controllability of the automaton describing the system. To solve the problem, the concept of navigation automaton is introduced, allowing a simplification in the analysis of controllability. A set of illustrative examples is presented.


  1. 1.
    Simmons, R., Koenig, S.: Probabilistic Robot Navigation in Partially Observable Environments. In: Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 1080–1087 (1995)Google Scholar
  2. 2.
    Steinhage, A.: Dynamical Systems for the Generation of Navigation Behaviour. PhD thesis, Institut für Neuroinformatik, Ruhr-Universität, Bochum Germany (1997)Google Scholar
  3. 3.
    Hale, R.D., Rokonuzzaman, M., Gosine, R.G.: Control of Mobile Robots in Unstructured Environments Using Discrete Event Modeling. In: SPIE International Symposium on Intelligent Systems and Advanced Manufacturing, Boston, USA (1999)Google Scholar
  4. 4.
    Balch, T., Hybinette, M.: Social Potentials for Scalable Multirobot Formations. In: IEEE International Conference on Robotics and Automation (ICRA 2000), San Francisco, USA (2000)Google Scholar
  5. 5.
    Balch, T., Arkin, R.C.: Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation 14, 926–939 (1998)CrossRefGoogle Scholar
  6. 6.
    Melo, F.A., Lima, P., Ribeiro, M.I.: Event-driven modelling and control of a mobile robot population. In: Proceedings of the 8th Conference on Intelligent Autonomous Systems, Amsterdam Netherlands (2004)Google Scholar
  7. 7.
    Melo, F.A., Ribeiro, M.I., Lima, P.: Blocking controllability of a mobile robot population. Technical Report RT-601-04, Institute for Systems and Robotics (2004)Google Scholar
  8. 8.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. The Kluwer International Series On Discrete Event Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francisco A. Melo
    • 1
  • M. Isabel Ribeiro
    • 1
  • Pedro Lima
    • 1
  1. 1.Institute for Systems and RoboticsInstituto Superior TécnicoLisboaPortugal

Personalised recommendations