Plug and Play: Fast Automatic Geometry and Color Calibration for Cameras Tracking Robots

  • Anna Egorova
  • Mark Simon
  • Fabian Wiesel
  • Alexander Gloye
  • Raúl Rojas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)


We have developed an automatic calibration method for a global camera system. Firstly, we show how to define automatically the color maps we use for tracking the robots’ markers. The color maps store the parameters of each important color in a grid superimposed virtually on the field. Secondly, we show that the geometric distortion of the camera can be computed automatically by finding white lines on the field. The necessary geometric correction is adapted iteratively until the white lines in the image fit the white lines in the model. Our method simplifies and speeds up significantly the whole setup process at RoboCup competitions. We will use these techniques in RoboCup 2004.


Geometric Distortion Soft Shadow Geometric Calibration Color Calibration Important Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brusey, J., Padgham, L.: Techniques for Obtaining Robust, Real-Time, Colour-Based Vision for Robotics. In: Proceedings IJCAI 1999 - International Joint Conference on Artificial Intelligence, The Third International Workshop on RoboCup –Stockholm (1999)Google Scholar
  2. 2.
    Forsyth, D.A., Ponce, A.: Computer Vision: A Modern Approach, 1st edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  3. 3.
    von Hundelshausen, F., Rojas, R.: Tracking Regions. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 250–261. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Gribbon, K.T., Johnston, C.T., Bailey, D.G.: A Real-time FPGA Implementation of a Barrel Distortion Correction Algorithm with Bilinear Interpolation. Image and Vision Computing, Palmerston North, New Zealand, 408-413 (November 26-28, 2003)Google Scholar
  5. 5.
    Jacobsen: Geometric Calibration of Space Remote Sensing Cameras for Efficient Processing. International Archives of Photogrammetry and Remote Sensing, Part I 32, 33–43Google Scholar
  6. 6.
    Kulessa, T., Hoch, M.: Efficient Color Segmentation under Varying Illumination Conditions. In: Proceedings of the 10th IEEE Image and Multidimensional Digital Signal Processing Workshop, July 12-16 (1998)Google Scholar
  7. 7.
    Simon, M., Behnke, S., Rojas, R.: Robust Real Time Color Tracking. In: Stone, P., Balch, T. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 239–248. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Rojas, R., Behnke, S., Liers, A., Knipping, L.: FU-Fighters 2001 (Global Vision). In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, p. 571. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Whitehead, A., Roth, G.: Evolutionary Based Autocalibration from the Fundamental Matrix. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, p. 292. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Zrimec, T., Wyatt, A.: Learning to Recognize Objects - Toward Automatic Calibration of Color Vision for Sony Robots. In: Workshop of the Nineteenth International Conference on Machine Learning, ICML 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anna Egorova
    • 1
  • Mark Simon
    • 1
  • Fabian Wiesel
    • 1
  • Alexander Gloye
    • 1
  • Raúl Rojas
    • 1
  1. 1.Freie Universität BerlinBerlinGermany

Personalised recommendations