Advertisement

Extensions to Object Recognition in the Four-Legged League

  • Christopher J. Seysener
  • Craig L. Murch
  • Richard H. Middleton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)

Abstract

Humans process images with apparent ease, quickly filtering out useless information and identifying objects based on their shape and colour. However, the undertaking of visual processing and the implementation of object recognition systems on a robot can be a challenging task. While many algorithms exist for machine vision, fewer have been developed with the efficiency required to allow real-time operation on a processor limited platform. This paper focuses on several efficient algorithms designed to identify field landmarks and objects found in the controlled environment of the RoboCup Four-Legged League.

Keywords

Corner Point Centre Circle Sparse Grid Robot Soccer Horizon Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    RoboCup Four-Legged League web site, http://www.openr.org/robocup/index.html
  2. 2.
    Burkhard, H.-D., Düffert, U., Hoffmann, J., Jüngel, M., Lötzsch, M., Brunn, R., Kallnik, M., Kuntze, N., Kunz, M., Petters, S., Risler, M., v Stryk, O., Koschmieder, N., Laue, T., Röfer, T., Spiess, Cesarz, A., Dahm, I., Hebbel, M., Nowak, W., Ziegler, J.: GermanTeam 2002 (2002), Only available online http://www.tzi.de/kogrob/papers/GermanTeam2002.pdf
  3. 3.
    Bunting, J., Chalup, S., Freeston, M., McMahan, W., Middleton, R.H., Murch, C., Quinlan, M., Seysener, C., Shanks, G.: Return of the NUbots! The NUbots Team Report (2003), http://robots.newcastle.edu.au/publications/NUbotFinalReport2003.pdf
  4. 4.
    Tardós, J.: Data Association in SLAM, http://www.cas.kth.se/SLAM/Presentations/mingo-slides.pdf
  5. 5.
    Levenberg, K.: A Method for the Solution of Certain Non-linear Problems in Least Squares. Quart. Appl. Math. 2, 164–168 (1944)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Chernov, N., Lesort, C.: Least Squares Fitting of Circles and Lines, http://arxiv.org/PScache/cs/pdf/0301/0301001.pdf
  7. 7.
    Marquardt, D.: An Algorithm for Least Squares Estimation of Non-linear Parameters. SIAM J. Appl. Math. 11, 431–441 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Shakarki, C.: Least-squares Fitting algorithms of the NIST algorithm testing system. J. Res. Nat. Inst. Stand. Techn. 103, 633–641 (1998)Google Scholar
  9. 9.
    Turner, K.: Computer perception of curved objects using a television camera, Ph.D. Thesis, Dept. of Machine Intelligence, University of Edinburgh (1974)Google Scholar
  10. 10.
    Sampson, P.D.: Fitting conic sections to very scattered data: an iterative refinement of the Bookstein algorithm. Comp. Graphics Image Proc. 18, 97–108 (1982)CrossRefGoogle Scholar
  11. 11.
    Taubin, G.: Estimation of Planar Curves, Surfaces and Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 1115–1138 (1991)CrossRefGoogle Scholar
  12. 12.
    Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: Problems with bilinear constraint. Intern. J. Comp. Vision 37, 127–150 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Chojnacki, W., Brooks, M.J., van den Hengel, A.: Rationalising the renormalization method of Kanatani. J. Math. Imaging & Vision. 14, 21–38 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christopher J. Seysener
    • 1
  • Craig L. Murch
    • 1
  • Richard H. Middleton
    • 1
  1. 1.School of Electrical Engineering & Computer ScienceThe University of NewcastleCallaghanAustralia

Personalised recommendations