Advertisement

Visual Robot Detection in RoboCup Using Neural Networks

  • Ulrich Kaufmann
  • Gerd Mayer
  • Gerhard Kraetzschmar
  • Günther Palm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)

Abstract

Robot recognition is a very important point for further improvements in game-play in RoboCup middle size league. In this paper we present a neural recognition method we developed to find robots using different visual information. Two algorithms are introduced to detect possible robot areas in an image and a subsequent recognition method with two combined multi-layer perceptrons is used to classify this areas regarding different features. The presented results indicate a very good overall performance of this approach.

Keywords

Attention Control Robot Position Robot Soccer Orientation Histogram Blob Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mayer, G., Utz, H., Kraetzschmar, G.: Playing robot soccer under natural light: A case study. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 238–249. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  2. 2.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  3. 3.
    Kestler, H.A., Simon, S., Baune, A., Schwenker, F., Palm, G.: Object Classification Using Simple, Colour Based Visual Attention and a Hierarchical Neural Network for Neuro-Symbolic Integration. In: Burgard, W., Christaller, T., Cremers, A. (eds.) Advances in Artificial Intelligence, pp. 267–279. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Simon, S., Kestler, H., Baune, A., Schwenker, F., Palm, G.: Object Classification with Simple Visual Attention and a Hierarchical Neural Network for Subsymbolic-Symbolic Integration. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 244–249 (1999)Google Scholar
  5. 5.
    Fay, R.: Hierarchische neuronale Netze zur Klassifikation von 3D-Objekten (in german). Master’s thesis, University of Ulm, Department of Neural Information Processing (2002)Google Scholar
  6. 6.
    Jamzad, M., Sadjad, B., Mirrokni, V., Kazemi, M., Chitsaz, H., Heydarnoori, A., Hajiaghai, M., Chiniforooshan, E.: A fast vision system for middle size robots in robocup. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, p. 71. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Simon, M., Behnke, S., Rojas, R.: Robust real time color tracking. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, p. 239. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Jonker, P., Caarls, J., Bokhove, W.: Fast and accurate robot vision for vision based motion. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, p. 149. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Zagal, J.C., del Solar, J.R., Guerrero, P., Palma, R.: Evolving visual object recognition for legged robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 181–191. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  10. 10.
    Treptow, A., Masselli, A., Zell, A.: Real-time object tracking for soccer-robots without color information. In: Proceedings of the European Conference on Mobile Robotics, ECMR 2003 (2003)Google Scholar
  11. 11.
    Hanek, R., Schmitt, T., Buck, S., Beetz, M.: Towards robocup without color labeling. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 179–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Utz, H., Neubeck, A., Mayer, G., Kraetzschmar, G.K.: Improving vision-based self-localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 25–40. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Schmitt, T., Hanek, R., Beetz, M., Buck, S.: Watch their moves: Applying probabilistic multiple object tracking to autonomous robot soccer. In: Eighteenth National Conference on Artificial Intelligence, Edmonton, Alberta, Canada (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ulrich Kaufmann
    • 1
  • Gerd Mayer
    • 1
  • Gerhard Kraetzschmar
    • 1
  • Günther Palm
    • 1
  1. 1.Department of Neural Information ProcessingUniversity of UlmUlmGermany

Personalised recommendations