Robust Multi-robot Object Localization Using Fuzzy Logic

  • Juan Pedro Cánovas
  • Kevin LeBlanc
  • Alessandro Saffiotti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)


Cooperative localization of objects is an important challenge in multi-robot systems. We propose a new approach to this problem where we see each robot as an expert which shares unreliable information about object locations. The information provided by different robots is then combined using fuzzy logic techniques, in order to reach a consensus between the robots. This contrasts with most current probabilistic techniques, which average information from different robots in order to obtain a tradeoff, and can thus incur well-known problems when information is unreliable. In addition, our approach does not assume that the robots have accurate self-localization. Instead, uncertainty in the pose of the sensing robot is propagated to object position estimates. We present experimental results obtained on a team of Sony AIBO robots, where we share information about the location of the ball in the RoboCup domain.


Fuzzy Logic Object Localization Ball Position Position Grid Cooperative Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bloch, I.: Information combination operators for data fusion: A comparative review with classification. IEEE Trans on Systems, Man, and Cybernetics A-26(1), 52–67 (1996)Google Scholar
  2. 2.
    Bresenham, J.E.: A linear algorithm for incremental display of circular arcs. Communications of the ACM 20(2), 100–106 (1977)zbMATHCrossRefGoogle Scholar
  3. 3.
    Buschka, P., Saffiotti, A., Wasik, Z.: Fuzzy landmark-based localization for a legged robot. In: Procs. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1205–1210 (2000)Google Scholar
  4. 4.
    Chaos, T.: Team Chaos web site,
  5. 5.
    Sony Corporation. AIBO entertainment robot web site,
  6. 6.
    Dietl, M., Gutmann, J.-S., Nebel, B.: Cooperative sensing in dynamic environments. In: Procs. of the IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1706–1713 (2001)Google Scholar
  7. 7.
    Durrant-Whyte, H.F.: Integration, Coordination, and Control of Multi-Sensor Robot Systems. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  8. 8.
    The RoboCup Federation. RoboCup official web site,
  9. 9.
    Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. Artificial Intelligence Research Journal 11, 391–427 (1999)zbMATHGoogle Scholar
  10. 10.
    Gutmann, J.-S.: Markov-Kalman localization for mobile robots. In: Procs. of the Int. Conf. on Pattern Recognition (ICPR), pp. 601–604 (2002)Google Scholar
  11. 11.
    Hanek, R., Schmitt, T., Klupsch, M., Buck, S.: From multiple images to a consistent view. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 169–178. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Marcelino, P., Nunes, P., Lima, P., Ribeiro, I.: Improving object localization through sensor fusion applied to soccer robots. In: Proc. of the Scientific Meeting of the 3rd Robotics National Festival (Robotica 2003), Lisbon, Portugal (2003)Google Scholar
  13. 13.
    Roth, M., Vail, D., Veloso, M.: A world model for multi-robot teams with communication. In: Procs. of the IEEE Int. Conf. on Intelligent Robots and Systems, IROS (2003)Google Scholar
  14. 14.
    Roumeliotis, S.I., Bekey, G.A.: Synergetic localization for groups of mobile robots. In: Proc. IEEE Conf. on Decision and Control, pp. 3477–3482 (2000)Google Scholar
  15. 15.
    Saffiotti, A.: The uses of fuzzy logic in autonomous robot navigation. Soft Computing 1(4), 180–197 (1997), Online at Google Scholar
  16. 16.
    Schmitt, T., Hanek, R., Buck, S., Beetz, M.: Cooperative probabilistic state estimation for vision-based autonomous soccer robots. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 193–203. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Spors, S., Strobel, N.: A multi-sensor object localization system. In: Int Workshop on Vision, Modeling and Visualization (VMV), pp. 19–26 (2001)Google Scholar
  18. 18.
    Stroupe, M.: Merging gaussian distributions for object localization in multi-robot systems. In: Procs of the Int Symposium on Experimental Robotics (ISER). Springer, Heidelberg (2000)Google Scholar
  19. 19.
    Weber, S.: A generalconcept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy sets and systems 11, 115–134 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Juan Pedro Cánovas
    • 1
  • Kevin LeBlanc
    • 2
  • Alessandro Saffiotti
    • 2
  1. 1.Dept. of Information and Comm. Eng.University of MurciaMurciaSpain
  2. 2.AASS Mobile Robotics Lab, Dpt. TechnologyÖrebro UniversityÖrebroSweden

Personalised recommendations