Sensor-Actuator-Comparison as a Basis for Collision Detection for a Quadruped Robot

  • Jan Hoffmann
  • Daniel Göhring
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)


Collision detection in a quadruped robot based on the comparison of sensor readings (actual motion) to actuator commands (intended motion) is described. Ways of detecting such incidences using just the sensor readings from the servo motors of the robot’s legs are shown. Dedicated range sensors or collision detectors are not used. It was found that comparison of motor commands and actual movement (as sensed by the servo’s position sensor) allowed the robot to reliably detect collisions and obstructions. Minor modifications to make the system more robust enabled us to use it in the RoboCup domain, enabling the system to cope with arbitrary movements and accelerations apparent in this highly dynamic environment. A sample behavior is outlined that utilizes the collision information. Further emphasis was put on keeping the process of calibration for different robot gaits simple and manageable.


Obstacle Avoidance Collision Detection Motor Command Sensor Reading Servo Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Robocup rescue web site (2003),
  2. 2.
    Clark, J.E., Cham, J.G., Bailey, S.A., Froehlich, E.M., Nahata, P.K., Full, R.J., Cutkosky, M.R.: Biomimetic Design and Fabrication of a Hexapedal Running Robot. In: Intl. Conf. Robotics and Automation, ICRA 2001 (2001)Google Scholar
  3. 3.
    Fujita, M., Kitano, H.: Development of an Autonomous Quadruped Robot for Robot Entertainment. Autonomous Robots 5(1), 7–18 (1998)CrossRefGoogle Scholar
  4. 4.
    Gutmann, J.-S., Burgard, W., Fox, D., Konolige, K.: An experimental comparison of localization methods. In: Proceedings of the 1998 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, IROS 1998 (1998)Google Scholar
  5. 5.
    Lankenau, T.: Self-Localization in Large-Scale Environments for the Bremen Autonomous Wheelchair. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS (LNAI), vol. 2685, pp. 34–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Lenser, S., Veloso, M.: Visual Sonar: Fast Obstacle Avoidance Using Monocular Vision. In: Proceedings of IROS (2003)Google Scholar
  7. 7.
    Lötzsch, M., Bach, J., Burkhard, H.-D., Jüngel, M.: Designing agent behavior with the extensible agent behavior specification language XABSL. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 114–124. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  8. 8.
    Dario, C.L.P., Guglielmelli, E.: Humanoids and personal robots: design and experiments. Journal of Robotic Systems 18(2) (2001)Google Scholar
  9. 9.
    Quinlan, M.J., Murch, C.L., Middleton, R.H., Chalup, S.K.: Traction Monitoring for Collision Detection with Legged Robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 374–384. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Röfer, T., Dahm, I., Düffert, U., Hoffmann, J., Jüngel, M., Kallnik, M., Lötzsch, M., Risler, M., Stelzer, M., Ziegler, J.: GermanTeam 2003. In: 7th International Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Conferences). LNCS (LNAI), Springer, Heidelberg (2004) (to appear) (more detailed in), Google Scholar
  11. 11.
    Röfer, T., Jüngel, M.: Vision-Based Fast and Reactive Monte-Carlo Localization. IEEE International Conference on Robotics and Automation (2003)Google Scholar
  12. 12.
    Weigel, T., Kleiner, A., Diesch, F., Dietl, M., Gutmann, J.-S., Nebel, B., Stiegeler, P., Szerbakowski, B.: CS freiburg 2001. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, p. 26. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Yoshida, K., Hamano, H., Watanabe, T.: Slip-Based Traction Control of a Planetary Rover. In: Experimental Robotics VIII, Advanced Robotics Series. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jan Hoffmann
    • 1
  • Daniel Göhring
    • 1
  1. 1.Institut für Informatik, LFG Künstliche IntelligenzHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations