Advertisement

An Egocentric Qualitative Spatial Knowledge Representation Based on Ordering Information for Physical Robot Navigation

  • Thomas Wagner
  • Kai Hübner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3276)

Abstract

Navigation is one of the most fundamental tasks to be accomplished by many types of mobile and cognitive systems. Most approaches in this area are based on building or using existing allocentric, static maps in order to guide the navigation process. In this paper we propose a simple egocentric, qualitative approach to navigation based on ordering information. An advantage of our approach is that it produces qualitative spatial information which is required to describe and recognize complex and abstract, i.e., translation-invariant behavior. In contrast to other techniques for mobile robot tasks, that also rely on landmarks it is also proposed to reason about their validity despite insufficient and insecure sensory data. Here we present a formal approach that avoids this problem by use of a simple internal spatial representation based on landmarks aligned in an extended panoramic representation structure.

Keywords

Mobile Robot Plan Recognition Egocentric Representation Penalty Area Egocentric View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Busquets, D., Sierra, C., De Mantaras, R.L.: A multiagent approach to qualitative landmark-based navigation. Autonomous Robots 15(1), 129–154 (2003)CrossRefGoogle Scholar
  2. 2.
    Durrant-Whyte, H., Majumder, S., Thrun, S., de Battista, M., Schelling, S.: A bayesian algorithm for simulaneous localization and map building. In: Proceedings of the 10’th International Symposium on Robotics Research (ISRR 2001), Lorne, Australia, AAAI Press/MIT Press (2001)Google Scholar
  3. 3.
    Easton, R.D., Sholl, M.J.: Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology: Learning, Memory and Cognition 21(2), 483–500 (1995)CrossRefGoogle Scholar
  4. 4.
    Erol, K., Hendler, J., Nau, D.S.: HTN planning: Complexity and expressivity. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI 1994), Seattle, Washington, USA, vol. 2, pp. 1123–1128. AAAI Press/MIT Press (1994)Google Scholar
  5. 5.
    Garsoffky, B., Schwan, S., Hesse, F.W.: Viewpoint dependency in the recognition of dynamic scenes. Journal of Experimental Psychology: Learning, Memory and Cognition 28(6), 1035–1050 (2002)CrossRefGoogle Scholar
  6. 6.
    Huebner, K.: A Symmetry Operator and its Application to the RoboCup. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 274–283. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Johansson, S., Saffiotti, A.: Using the Electric Field Approach in the RoboCup Domain. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 399–404. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    John, U.: Solving large configuration problems efficiently by clustering the conbacon model. In: Logananthara, R., Palm, G., Ali, M. (eds.) IEA/AIE 2000. IEA/AIE, vol. 1821, pp. 396–405. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119(1-2), 191–233 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Latombe, J.C.: Robot Motion Planning, vol. 18. Kluwer Academic Press, Dordrecht (1991)Google Scholar
  11. 11.
    Levitt, T.S., Lawton, D.T.: Qualitative navigation for mobile robots. Artificial Intelligence 44, 305–360 (1990)CrossRefGoogle Scholar
  12. 12.
    Lucchesi, M.: Coaching the 3-4-1-2 and 4-2-3-1. Reedswain Publishing, edizioni nuova prhomos edition (2001)Google Scholar
  13. 13.
    Martin, C., Thrun, S.: Online acquisition of compact volumetric maps with mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2002)Google Scholar
  14. 14.
    O’Keefe, J., Speakman, A.: The Hippocampus as A Cognitive Map. Clarendon Press, Oxford (1978)Google Scholar
  15. 15.
    Prescott, T.J.: Spatial representation for navigation in animats. Adaptive Behavior 4(2), 85–125 (1996)CrossRefGoogle Scholar
  16. 16.
    Redish, D.A.: Beyond the Cognitive Map - From Place Cells to Episodic Memory. The MIT Press, Cambridge (1999)Google Scholar
  17. 17.
    Roefer, T.: An Architecture for a National RoboCup Team. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 417–425. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Roefer, T., Juengel, M.: Vision-Based Fast and Reactive Monte-Carlo Localization. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-2003), Taipei, Taiwan, pp. 856–861 (2003)Google Scholar
  19. 19.
    Schlieder, C.: Representing visible locations for qualitative navigation, pp. 523–532 (1993)Google Scholar
  20. 20.
    Schlieder, C.: Ordering information and symbolic projection (1996)Google Scholar
  21. 21.
    Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. In: W3c candidate recommendation (August 18, 2003), http://www.w3.org/TR/owl-guide/
  22. 22.
    Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Hähnel, D., Rosenberg, C., Roy, N., Schulte, J., Schulz, D.: Probabilistic algorithms and the interactive museum tour-guide robot minerva. International Journal of Robotics Research 19(11), 972–999 (2000)CrossRefGoogle Scholar
  23. 23.
    Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Henning, D., Hofmann, T., Krell, M., Schmidt, T.: Map learning and high-speed navigation in RHINO. In: AI-based Mobile Robots: Case Studies of Successful Robot Systems. MIT Press, Cambridge (1998)Google Scholar
  24. 24.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2000)CrossRefGoogle Scholar
  25. 25.
    Thrun, S., Hähnel, D., Ferguson, D., Montemerlo, M., Triebel, R., Burgard, W., Baker, C., Omohundro, Z., Thayer, S., Whittaker, W.: A system for volumetric robotic mapping of abandoned mines. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2003)Google Scholar
  26. 26.
    Tolman, E.C.: Cognitive maps in rats and men. Psycholoical Review 55, 189–208 (1948)CrossRefGoogle Scholar
  27. 27.
    Wagner, T., Schlieder, C., Visser, U.: An extended panorama: Efficient qualitative spatial knowledge representation for highly dynamic enironments. In: IJCAI 2003 Workshop on Issues in Desgning Physical Agents for Dynamic Real-Time Environments: World Modeling, Planning, Learning, and Communicating, pp. 109–116 (2003)Google Scholar
  28. 28.
    Wang, R.F.: Representing a stable environment by egocentric updating and invariant representations. Spatial Cognition and Computation 1, 431–445 (2000)CrossRefGoogle Scholar
  29. 29.
    Wang, R.F., Spelke, E.S.: Updating egocentric represenations in human navigation. Cognition 77, 215–250 (2000)CrossRefGoogle Scholar
  30. 30.
    Wang, R.F., Spelke, E.S.: Human spatial representation: Insights from animals. Trends in Cognitive Science 6(9), 176–182 (2002)CrossRefGoogle Scholar
  31. 31.
    Zheng, J.Y., Tsuji, S.: Panoramic representation for route recognition by a mobile robot. International Journal of Computer Vision 9(1), 55–76 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Wagner
    • 1
  • Kai Hübner
    • 2
  1. 1.Center for Computing Technologies (TZI)Universität BremenBremen
  2. 2.Bremen Institute of Safe Systems (BISS)Universität BremenBremen

Personalised recommendations