Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2605))

Abstract

Probabilistic conditionals are a powerful means of representing commonsense and expert knowledge. By viewing probabilistic conditionals as an institution, we obtain a formalization of probabilistic conditionals as a logical system. Using the framework of institutions, we phrase a general representation problem that is closely related to the selection of preferred models. The problem of discovering probabilistic conditionals from data can be seen as an instance of the inverse representation problem, thereby considering knowledge discovery as an operation inverse to inductive knowledge representation. These concepts are illustrated using the well-known probabilistic principle of maximum entropy for which we sketch an approach to solve the inverse representation problem.

The research reported here was partially supported by the DFG – Deutsche Forschungsgemeinschaft within the Condor-project under grant BE 1700/5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in knowledge discovery and data mining, pp. 307–328. MIT Press, Cambridge (1996)

    Google Scholar 

  2. Burstall, R., Goguen, J.: The semantics of Clear, a specification language. In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980)

    Google Scholar 

  3. Beierle, C., Hedtstück, U., Pletat, U., Schmitt, P.H., Siekmann, J.: An order-sorted logic for knowledge representation systems. Artificial Intelligence 55(2–3), 149–191 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beierle, C., Kern-Isberner, G.: Looking at probabilistic conditionals from an institutional point of view. In: Workshop Conditionals, Information, and Inference, Hagen (2002)

    Google Scholar 

  5. Buntine, W.: A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering 8(2), 195–210 (1996)

    Article  Google Scholar 

  6. Beierle, C., Voss, A.: Viewing implementations as an institution. In: Pitt, D.H., Rydeheard, D.E., Poigné, A. (eds.) Category Theory and Computer Science. LNCS, vol. 283, Springer, Heidelberg (1987)

    Google Scholar 

  7. Beierle, C., Voss, A.: Stepwise software development: Combining axiomatic and algorithmic approaches in algebraic specifications. Technology and Science of Informatics 10(1), 35–51 (1991)

    Google Scholar 

  8. Calabrese, P.G.: Deduction and inference using conditional logic and probability. In: Goodman, I.R., Gupta, M.M., Nguyen, H.T., Rogers, G.S. (eds.) Conditional Logic in Expert Systems, pp. 71–100. Elsevier, North Holland (1991)

    Google Scholar 

  9. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic networks and expert systems. Springer, New York (1999)

    MATH  Google Scholar 

  10. Crocco, G., Fariñas del Cerro, L., Herzig, A. (eds.): Conditionals: From Philosophy to Computer Science. Studies in Logic and Computation. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  11. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine learning 9, 309–347 (1992)

    MATH  Google Scholar 

  12. Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3, 146–158 (1975)

    Article  MATH  Google Scholar 

  13. DeFinetti, B.: Theory of Probability, vol. 1,2. John Wiley and Sons, New York (1974)

    Google Scholar 

  14. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1 – Equations and Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6. Springer, Berlin (1985)

    MATH  Google Scholar 

  15. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Geiger, D.: An entropy-based learning algorithm of bayesian conditional trees. In: Proceedings Eighth Conference on Uncertainty in Artificial Intelligence, pp. 92–97 (1992)

    Google Scholar 

  17. Goguen, J.A., Rosu, G.: Institution morphisms. In: Sannella, D. (ed.) Festschrift for Rod Burstall (2002) (to appear)

    Google Scholar 

  18. Goguen, J., Tracz, W.: An implementation-oriented semantics for module composition. In: Leavens, G., Sitaraman, M. (eds.) Foundations of Component-based Systems, Cambridge, pp. 231–263 (2000)

    Google Scholar 

  19. Herskovits, E., Cooper, G.: Kutató: An entropy-driven system for construction of probabilistic expert systems from databases. Technical Report KSL-90-22, Knowledge Systems Laboratory (1990)

    Google Scholar 

  20. Heckerman, D.: Bayesian networks for knowledge discovery. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in knowledge discovery and data mining. MIT Press, Cambridge (1996)

    Google Scholar 

  21. Herrlich, H., Strecker, G.E.: Category theory. Allyn and Bacon, Boston (1973)

    MATH  Google Scholar 

  22. Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artificial Intelligence 98, 169–208 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kern-Isberner, G.: Solving the inverse representation problem. In: Proceedings 14th European Conference on Artificial Intelligence, ECAI 2000, Berlin, pp. 581–585. IOS Press, Amsterdam (2000)

    Google Scholar 

  24. Kern-Isberner, G.: Conditional preservation and conditional indifference. Journal of Applied Non-Classical Logics 11(1-2), 85–106 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kern-Isberner, G. (ed.): Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087, p. 27. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  26. Kern-Isberner, G.: Discovering most informative rules from data. In: Proceedings International Conference on Intelligent Agents, Web Technologies and Internet Commerce, IAWTIC 2001 (2001)

    Google Scholar 

  27. Kern-Isberner, G., Reidmacher, H.P.: Interpreting a contingency table by rules. International Journal of Intelligent Systems 11(6) (1996)

    Google Scholar 

  28. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1972)

    Google Scholar 

  30. Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., Ginsberg, M.L., de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 1–18. Springer, Heidelberg (1988)

    Google Scholar 

  31. Megiddo, N., Srikant, R.: Discovering predictive association rules. In: Proceedings of the 4th International Conference on Knowledge Discovery in Databases and Data Mining (1998)

    Google Scholar 

  32. Paris, J.B.: The uncertain reasoner’s companion – A mathematical perspective. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  33. Paris, J.B., Vencovská, A.: A note on the inevitability of maximum entropy. International Journal of Approximate Reasoning 14, 183–223 (1990)

    Article  Google Scholar 

  34. Rödder, W., Kern-Isberner, G.: Representation and extraction of information by probabilistic logic. Information Systems 21(8), 637–652 (1997)

    Article  Google Scholar 

  35. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Lecture Notes in Statistics, vol. 81. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  36. Shoham, Y.: A semantical approach to non-monotonic logics. In: Proceedings of the Tenth International Joint Conference on Artificial Intelligence, IJCAI 1987 (1987)

    Google Scholar 

  37. Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory IT-26, 26–37 (1980)

    Article  MathSciNet  Google Scholar 

  38. Sannella, D., Tarlecki, A.: Essential comcepts for algebraic specification and program development. Formal Aspects of Computing 9, 229–269 (1997)

    Article  MATH  Google Scholar 

  39. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)

    Google Scholar 

  40. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 675–788. Elsevier Science Publishers B.V., Amsterdam (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beierle, C., Kern-Isberner, G. (2005). Footprints of Conditionals. In: Hutter, D., Stephan, W. (eds) Mechanizing Mathematical Reasoning. Lecture Notes in Computer Science(), vol 2605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32254-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32254-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25051-7

  • Online ISBN: 978-3-540-32254-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics