Designing and Implementing MABS in AKIRA

  • Giovanni Pezzulo
  • Gianguglielmo Calvi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3415)


Here we present AKIRA, a framework for Agent-based cognitive and social simulations. AKIRA is an open-source project, currently developed mainly at ISTC-CNR, that exploits state-of-the-art techniques and tools. It gives to the programmer a number of facilities for building Agents at different levels of complexity (e.g. reactive, deliberative, layered). Here we describe the main architectural features (i.e. Hybridism of the Agents and the Energy Model) and the theoretical assumptions that motivate it. We also present some simulations.


Behavior Network Learn Classifier System Symbolic Operation Epistemic Action Agent Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castelfranchi, C., Falcone, R.: Principles of trust for MAS: Cognitive anatomy, social importance, and quantification. In: Proceedings of the Third International Conference on Multi- Agent Systems, Paris (1998)Google Scholar
  2. 2.
    Conte, R.: Emergent (Info)Institutions. Cognitive Systems Research 2(2) (2001)Google Scholar
  3. 3.
    Baars, B.J.: A Cognitive Theory of Consciousness. Cambridge University Press, Cambridge (1988)Google Scholar
  4. 4.
    Hofstadter, D.R., FARG: Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. Basic Books, New York (1995)Google Scholar
  5. 5.
    Jackson, J.V.: Idea for a Mind. Siggart Newsettler 181, 23–26 (1987)CrossRefGoogle Scholar
  6. 6.
    Kokinov, B.N.: The context-sensitive cognitive architecture DUAL. In: Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum Associates, Mahwah (1994)Google Scholar
  7. 7.
    Maes, P.: Situated Agents Can Have Goals. Robotics and Autonomous Systems 6 (1990)Google Scholar
  8. 8.
    Minsky, M.: The Society of Mind. Simon and Schuster, New York (1986)Google Scholar
  9. 9.
    Pezzulo, G., Lorini, E., Calvi, G.: How do I Know how much I don’t Know? A cognitive approach about Uncertainty and Ignorance. In: Proceedings of COGSCI 2004 (2004)Google Scholar
  10. 10.
    Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant Agent framework. CSELT internal technical report (1999)Google Scholar
  11. 11.
    Falcone, R., Pezzulo, G., Castelfranchi, C., Calvi, G.: Why a cognitive trustier performs better: Simulating trust-based Contract Nets. In: Proceedings of AAMAS 2004 (2004) Google Scholar
  12. 12.
    Rao, A., Georgeff, M.: BDI Agents from Theory to Practice, Tech. Note 56, AAII (1995)Google Scholar
  13. 13.
    Kosko, B.: Fuzzy cognitive maps. International Journal of Man-Machine Studies (24) (1986)Google Scholar
  14. 14.
    Mataric, M.J.: Designing and understanding adaptive group behavior. Adaptive Behavior 4(1) (1995)Google Scholar
  15. 15.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 166. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Minar, N., Murkhart, R., Langton, C., Askenazi, M.: The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations (1996),
  18. 18.
    CORMAS: Common-Pool Resources and Multi-Agent Systems - User Guide (2001),
  19. 19.
    di Tosto, G., Paolucci, M., Conte, R.: Altruism Among Simple and Smart Vampires. In: Proceedings of ABM 2003 (2003)Google Scholar
  20. 20.
    Sloman, A.: What sort of architecture is required for a human-like agent? In: Wooldridge, M., Rao, A. (eds.) Foundations of Rational Agency. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  21. 21.
    Rosenbloom, P.S., Laird, J.E., Newell, A.: The Soar Papers: Research on Integrated Intelligence, vol. 1,2. MIT Press, Cambridge (1992)Google Scholar
  22. 22.
    Kirsh, D., Maglio, P.: On distinguishing epistemic from pragmatic action. Cognitive Science 18, 513–549 (1994)CrossRefGoogle Scholar
  23. 23.
    Butz, M.V.: Anticipatory Learning classifier systems. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  24. 24.
    Kohonen, T.: Self-Organizating Maps. Springer, New York (1997)Google Scholar
  25. 25.
    Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychological Review 82, 407–428 (1975)CrossRefGoogle Scholar
  26. 26.
    McClelland, J.L., Rumelhart, D.E.: Explorations in Paralell Distributed Processing: A Handbook of Modles, Programs and Exercises. MIT Press, Cambridge (1988)Google Scholar
  27. 27.
    Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Patterns Applied. Addison Wesley Professional, Reading (2001)Google Scholar
  28. 28.
    Kokinov, B.: Micro-level hybridization in the cognitive architecture DUAL. In: Sun, R., Alexander, F. (eds.) Connectionist-symbolic integration: From unified to hybrid approaches, pp. 197–208. Lawrence Erlbaum Associates, Hilsdale (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Giovanni Pezzulo
    • 1
  • Gianguglielmo Calvi
    • 1
  1. 1.ISTC-CNRRomaItaly

Personalised recommendations