Skip to main content

Introduction to the Groups Treated in this Volume

  • Chapter
Flowering Plants · Eudicots

Part of the book series: The Families and Genera of Vascular Plants ((FAMILIES GENERA,volume 9))

Abstract

A close relationship between Berberidopsidaceae and Aextoxicaceae has never been considered until gene sequence studies provided strong support for a relationship between them (see family treatments). In the four-gene analysis of eudicots (Soltis et al. 2003), Gunnerales and subsequently Berberidopsidales are sister to all other core eudicots, the latter being strongly supported by molecular data and isolated from all other clades (Fig. 1). Aextoxicum has long been known for its peculiar wood anatomy, particularly the high number of bars of the vessel element perforations. A recent study by Carlquist (2003) has revealed many important similarities in the wood anatomy of the two families, although these are plesiomorphic. Pollen grains are relatively small and tricolpate to indistinctly colporate. The two families share encyclocytic stomata (Soltis et al. 2005), a rare character in angiosperms, stout filaments, and a ring of vascular bundles in the petiole (Judd and Olmstead 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balthazar, M. von, Pedersen, K.R., Friis, M.E. 2005. Teixeira lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to Ranunculales. Pl. Syst. Evol. 255:55–75.

    Article  Google Scholar 

  • Carlquist, S. 2003. Wood anatomy of Aextoxicaceae and Berberidopsidaceae is compatible with their inclusion in Berberidopsidales. Syst. Bot. 28:317–325.

    Google Scholar 

  • Judd, W.S., Olmstead, R.G. 2004. A survey of tricolpate (eudicot) phylogenetic relationships. Amer. J. Bot. 91:1627–1644.

    Google Scholar 

  • Ronse DeCraene, L.P. 2004. Floral development of Berberidopsis corallina: a crucial link in the evolution of flowers in the core eudicots. Ann. Bot. 94:741–751.

    Article  Google Scholar 

  • Soltis, D.E. et al. 2003. See general references.

    Google Scholar 

  • Soltis, D.E. et al. 2005. See general references.

    Google Scholar 

References

  • Doyle, J.A. 1999. The rise of angiosperms as seen in the African Cretaceous pollen record. In: Heine, K. (ed.) Palaeoecology of Africa and the surrounding islands. Rotterdam: Balkema, pp. 3–29.

    Google Scholar 

References

  • Chase, M.W. et al. 1993. See general references.

    Google Scholar 

  • Fernando, E.S. et al. 1993. See selected bibliography of Surianaceae.

    Google Scholar 

  • Morgan, D.R. et al. 1994. See selected bibliography of Quillajaceae.

    Google Scholar 

  • Soltis, P.S., Soltis, D.E., Chase, M.W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, D.E. et al. 2000. See general references.

    Google Scholar 

  • Stevens, P.F. 2005. See general references.

    Google Scholar 

References

  • APG II 2003. See general references.

    Google Scholar 

  • Boesewinkel, F.D. 1988. The seed structure and taxonomic relationships of Hypseocharis Remy. Acta Bot. Neerl. 37:111–120.

    Google Scholar 

  • Boesewinkel, F.D. 1997. Seed structure and phylogenetic relationships of the Geraniales. Bot. Jahrb. Syst. 119:277–291.

    Google Scholar 

  • Chase, M.W. et al. 1993. See general references.

    Google Scholar 

  • Dahlgren, R. 1980. A revised system of classification of the angiosperms. Bot. J. Linn. Soc. 80:91–124.

    Google Scholar 

  • Engler, A. 1892. Syllabus der Vorlesungen über spezielle und medizinisch-pharmazeutische Botanik. Berlin: Gebr. Borntraeger.

    Google Scholar 

  • Hegnauer, R. 1969, 1989. See general references.

    Google Scholar 

  • Knuth, R. 1931. Geraniaceae. In: Engler, A., Harms, H. (eds) Die natürlichen Pflanzenfamilien, ed. 2, 19a. Leipzig: W. Engelmann.

    Google Scholar 

  • Kubitzki, K. (ed.) 2004. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales. The Families and Genera of Flowering Plants, VI. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Morgan, D.R., Soltis, D.E. 1993. See general references.

    Google Scholar 

  • Price, R.A., Palmer, J.D. 1993. See general references.

    Google Scholar 

  • Savolainen, V., Fay, M.F. et al. 2000. See general references.

    Google Scholar 

  • Soltis, D.E. et al. 2000. See general references.

    Google Scholar 

  • Sosa, V., Chase, M.W. 2003. See general references.

    Google Scholar 

  • Takhtajan, A.L. 1959. Die Evolution der Angiospermen. Stuttgart: G. Fischer.

    Google Scholar 

  • Takhtajan, A. 1987. See general references.

    Google Scholar 

  • Thorne, R.F. 2001. See general references.

    Google Scholar 

  • Weigend, M. 2005. Notes on the floral morphology in Vivianiaceae (Geraniales). Pl. Syst. Evol. 253:125–131.

    Article  Google Scholar 

References

  • Doust, A.W., Stevens, P.F. 2005. A reinterpretation of the staminate flowers of Haptanthus. Syst. Bot. 30:779–785.

    Article  Google Scholar 

  • Hilu, K.W. et al. 2003. See general references.

    Google Scholar 

  • Kubitzki, K. 1987. Origin and significance of trimerous flowers. Taxon 36:21–28.

    Article  Google Scholar 

  • Kubitzki, K., Rohwer, J.G., Bittrich, V. (eds) Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. The Families and Genera of Vascular Plants, II. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Soltis, P.S., Soltis, D.E. 2004. The origin and diversification of angiosperms. Amer. J. Bot. 91:1614–1626.

    Google Scholar 

  • Soltis, D.E. et al. 2000. See general references.

    Google Scholar 

  • Soltis, D.E. et al. 2003. See general references.

    Google Scholar 

  • Takhtajan, A. 1997. See general references.

    Google Scholar 

References

  • APG II 2003. See general references.

    Google Scholar 

  • Briggs, B.G., Johnson, L.A.S. 1979. Evolution in the Myrtaceae — evidence from inflorescence structure. Proc. Linn. Soc. New South Wales 102:157–256.

    Google Scholar 

  • Candolle, A.P. de 1828. Prodromus systematis naturalis regni vegetabilis. Pars III. Paris: Treuttel & Würtz.

    Google Scholar 

  • Clausing, G., Renner, S.S. 2001. Molecular phylogenetics of Melastomataceae and Memcylaceae: implications for character evolution. Amer. J. Bot. 88:486–498.

    Article  CAS  Google Scholar 

  • Conti, E. et al. 1996. See general references.

    Google Scholar 

  • Conti, E. et al. 1997. See general references.

    Google Scholar 

  • Conti, E. et al. 2002. See general references.

    Google Scholar 

  • Dahlgren, R., Thorne, R.F. 1984. The order Myrtales: circumscription, variation, and relationships. Ann. Missouri Bot. Gard. 71:633–699.

    Article  Google Scholar 

  • Graham, S.A. et al. 2005. See general references.

    Google Scholar 

  • Hilu, K.W. et al. 2003. See general references.

    Google Scholar 

  • Johnson, L.A.S., Briggs, B.G. 1984. Myrtales and Myrtaceae — a phylogenetic analysis. Ann. Missouri Bot. Gard. 71:700–756.

    Article  Google Scholar 

  • Patel, V.C., Skvarla, J.J., Raven, P.H. 1984. Pollen characters in relation to the delimitation of Myrtales. Ann. Missouri Bot. Gard. 71:858–969.

    Article  Google Scholar 

  • Renner, S.S. 1993. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic J. Bot. 13:519–540.

    Google Scholar 

  • Renner, S.S., Clausing, G., Meyer, K. 2001. Historical biogeography of Melatomataceae: the roles of Tertiary migration and long-distance dispersal. Amer. J. Bot. 88:1290–1300.

    Article  Google Scholar 

  • Rutschmann, F., Eriksson, T., Schönenberger, J., Conti, E. 2004. Did Crypteroniaceae disperse out of India? Molecular dating evidence from rbcL, ndhF, and rpl16 intron sequences. Intl J. Pl. Sci. 165,suppl. 4:S69–S83.

    Article  CAS  Google Scholar 

  • Schmid, R. 1980. Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae. Taxon 29:559–595.

    Article  Google Scholar 

  • Schönenberger, J., Conti, E. 2003. Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales). Amer. J. Bot. 90:293–309.

    Google Scholar 

  • Stevens, P.F. 2005. See general references.

    Google Scholar 

  • Sytsma, K.J. et al. 2004. See general references.

    Google Scholar 

  • Tobe, H., Raven, P.H. 1983. An embryological analysis of the Myrtales: its definition and characteristics. Ann. Missouri Bot. Gard. 70:71–94.

    Article  Google Scholar 

  • Vliet, G.J.C.M. van, Baas, P. 1984. Wood anatomy and classification of the Myrtales. Ann. Missouri Bot. Gard. 71:783–800.

    Article  Google Scholar 

  • Weberling, F. 1988. The architecture of inflorescences in the Myrtales. Ann. Missouri Bot. Gard. 75:226–310.

    Article  Google Scholar 

  • Wikström, N. et al. 2001. See general references.

    Google Scholar 

  • Wilson, P.G., O’Brien, M.M., Heslewood, M.M., Quinn, C.J. 2005. Relationships within Myrtaceae sensu lato based on matK phylogeny. Pl. Syst. Evol. 251:3–19.

    Article  Google Scholar 

References

  • Blackmore, S., Barnes, S.H. 1995. Garside’s rule and the microspore tetrads of Grevillea rosmarinifolia A. Cunningham and Dryandra polycephala Bentham (Proteaceae). Rev. Palaeobot. Palynol. 85:111–121.

    Article  Google Scholar 

  • Blackmore, S., Crane, P.R. 1998. The evolution of apertures in the spores and pollen grains of embryophytes. In: Owens, S.J., Rudall, P.J. (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp. 159–182.

    Google Scholar 

  • Blackmore, S., Stafford, P., Persson, V. 1995. Palynology and systematics of Ranunculiflorae. Pl. Syst. Evol. suppl. 9:71–82.

    Google Scholar 

  • Borsch, T., Wilde, V. 2000. Pollen variability within species, populations, and individuals, with particular reference to Nelumbo. In: Harley, M.M., Morton, C.M., Blackmore, S. (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, pp. 285–299.

    Google Scholar 

  • Douglas, A.W., Tucker, S.C. 1996. Comparative floral ontogenies among Persoonioideae including Bellendena (Proteaceae). Amer. J. Bot. 83:1528–1555.

    Article  Google Scholar 

  • Doyle, J.A., Endress, P.K. 2000. Morphological phylogenetic analysis of basal angiosperms: comparisons and combination with molecular data. Intl J. Pl. Sci. 161,suppl. 6:S121–S153.

    Article  CAS  Google Scholar 

  • Doyle, J.A., Hotton, C.L., Ward, J.V. 1990. Early Cretaceous tetrads, zonasulculate pollen, and Winteraceae. II. Cladistic analysis and implications. Amer. J. Bot. 77:1558–1568.

    Article  Google Scholar 

  • Drinnan, A.N., Crane, P.R., Hoot, S.B. 1994. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Pl. Syst. Evol. suppl. 8:93–122.

    Google Scholar 

  • Endress, P.K., Igersheim, A. 1999. Gynoecium diversity and systematics of the basal eudicots. Bot. J. Linn. Soc. 130:305–393.

    Article  Google Scholar 

  • Friis, E.M., Crane, P.R. 1989. Reproductive structures of Cretaceous Hamamelidae. In: Crane, P.R., Blackmore, S. (eds) Evolution, systematics and fossil history of the Hamamelidae, 1. Oxford: Clarendon Press, pp. 155–174.

    Google Scholar 

  • Furness, C.A., Rudall, P.J. 2004. Pollen aperture evolution — a crucial factor for eudicot success? Trends Pl. Sci. 9:154–158.

    Article  CAS  Google Scholar 

  • Furness, C.A., Rudall, P.J., Sampson, F.B. 2002. Evolution of microsporogenesis in angiosperms. Intl J. Pl. Sci. 163:235–260.

    Article  Google Scholar 

  • Garside, S. 1946. The developmental morphology of the pollen of Proteaceae. J. S. African Bot. 12:27–34.

    Google Scholar 

  • Gottlieb, O.R., Kaplan, M.A.C., Zocher, D.H.T. 1993. A chemosystematic overview of Magnoliidae, Ranunculidae, Caryophyllidae and Hamamelidae. In: Kubitzki, K. (ed.) The Families and Genera of Vascular Plants, 2. Berlin Heidelberg New York: Springer, pp. 20–31.

    Google Scholar 

  • Hayes, V., Schneider, E.L., Carlquist, S. 2000. Floral development of Nelumbo nucifera (Nelumbonaceae). Intl J. Pl. Sci. 161,suppl. 6:S183–S191.

    Article  Google Scholar 

  • Hoot, S.B., Magallón, S., Crane, P.R. 1999. Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Ann. Missouri Bot. Gard. 86:1–32.

    Article  Google Scholar 

  • Huynh, K.-L. 1976. L’arrangement du pollen du genre Schisandra (Schisandraceae) et sa signification phylogénique chez les Angiospermes. Beitr. Biol. Pflanzen 52:227–253.

    Google Scholar 

  • Igersheim, A., Endress, P.K. 1998. Gynoecium diversity and systematics of the paleoherbs. Bot. J. Linn. Soc. 127:289–370.

    Article  Google Scholar 

  • Johnson, L.A.S., Briggs, B. 1975. See general references.

    Google Scholar 

  • Kreunen, S.S., Osborn, J.M. 1999. Pollen and anther development in Nelumbo (Nelumbonaceae). Amer. J. Bot. 86:1662–1676.

    Article  Google Scholar 

  • Kubitzki, K. 1993. Platanaceae. In: Kubitzki, K., Rohwer, J.G., Bittrich, V. (eds) Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. The Families and Genera of Vascular Plants, II. Berlin Heidelberg New York: Springer, pp. 521–522.

    Google Scholar 

  • Kubitzki, K., Rohwer, J.G., Bittrich, V. (eds) Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. The Families and Genera of Vascular Plants, II. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Kuprianova, L.A. 1979. On the possibility of the development of tricolpate pollen from monosulcate. Grana 18:1–4.

    Google Scholar 

  • Leng, Q., Schönenberger, J., Friis, E.M. 2005. Late Cretaceous follicular fruits from southern Sweden with systematic affinities to early diverging dicots. Bot. J. Linn. Soc. 148:377–407.

    Article  Google Scholar 

  • Magallón, S., Herendeen, P.S., Crane, P.R. 1997. Quadriplatanus georgianus gen. et sp. nov.: staminate and pis tillate platanaceous flowers from the Late Cretaceous (Coniacian-Santonian) of Georgia, U.S.A. Intl J. Pl. Sci. 158:373–394.

    Article  Google Scholar 

  • Ressayre, A., Dreyer, L., Triki-Teurtroy, S., Forchioni, A., Nadot, S. 2005. Post-meiotic cytokinesis and pollen aperture pattern ontogeny: comparison of development in four species differing in aperture pattern. Amer. J. Bot. 92:576–583.

    Google Scholar 

  • Soltis, D.E. et al. 2003. See general references.

    Google Scholar 

  • Ward, J.V., Doyle, J.A. 1994. Ultrastructure and relationships of mid-Cretaceous polyforate and triporate pollen from northern Gondwana. In: Kurmann, M.H., Doyle, J.A. (eds) Ultrastructure of fossil spores and pollen. Royal Botanic Gardens, Kew, pp. 161–172.

    Google Scholar 

References

  • APG II 2003. See general references.

    Google Scholar 

  • Bentham, G. 1865. Ordo LIX. Saxifrageae. In: Bentham, G., Hooker, J.D., Genera Plantarum, I, ii. London: Reeve, pp. 629–655.

    Google Scholar 

  • Chase, M.W. et al. 1993. See general references.

    Google Scholar 

  • Cronquist, A. 1981. See general references.

    Google Scholar 

  • Cutler, D.F., Gregory, M. (eds) 2000. Anatomy of the Dicotyledons, 2nd edn. Vol. 4, Saxifragales. Oxford: Clarendon Press.

    Google Scholar 

  • Davis, C.C., Chase, M.W. 2004. Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to Saxifragales. Amer. J. Bot. 91:262–273.

    Google Scholar 

  • Engler, A. 1891. Saxifragaceae. In: Engler, A., Prantl, K., Die natürlichen Pflanzenfamilien III, 2a. Leipzig: W. Engelmann, pp. 41–93.

    Google Scholar 

  • Engler, A. 1930. Saxifragaceae. In: Engler, A., Prantl, K., Die natürlichen Pflanzenfamilien, ed. 2, 18a. Leipzig, W. Engelmannn, pp. 74–226.

    Google Scholar 

  • Fishbein, M., Soltis, D.E. 2004. Further resolution of the rapid radiation of Saxifragales (Angiospetrms, Eudicots) supported by mixed-model Bayesian analysis. Syst. Bot. 29:883–891.

    Article  Google Scholar 

  • Fishbein, M. et al. 2001. See general references.

    Google Scholar 

  • Hegnauer, R. 1990. See general references.

    Google Scholar 

  • Huber, H. 1991. Angiospermen. Leitfaden durch die Ordnungen und Familien der Bedecktsamer. Stuttgart: G. Fischer.

    Google Scholar 

  • Kaplan, M.A.C., Gottlieb, O.R. 1982. Iridoids as systematic markers in dicotyledons. Biochem. Syst. Ecol. 10:329–347.

    Article  CAS  Google Scholar 

  • Kubitzki, K., Rohwer, J.G., Bittrich, V. (eds) Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. The Families and Genera of Vascular Plants, II. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Mauritzon, J. 1933. Studien über die Embryologie der Familien Crassulaceae und Saxifragaceae. Ph.D. Thesis, Lund University.

    Google Scholar 

  • Morgan, D.R., Soltis, D.E. 1993. Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Amer. J. Bot. 80:631–660.

    Google Scholar 

  • Nemirovich-Danchenko, E.N. 1994. Morphology and anatomy of the seeds of Iteaceae (in Russian). Bot. Zhurn. (Moscow & Leningrad) 79:83–87.

    Google Scholar 

  • Philipson, W.R. 1974. Ovular morphology and the major classification of the dicotyledons. Bot. J. Linn. Soc. 68:89–108.

    Google Scholar 

  • Praglowski, J. 1975. Pollen morphology of the Trochodendraceae, Tetracentraceae, Cercidiphyllaceae and Eupteleaceae with reference to taxonomy. Pollen Spores 16:449–467.

    Google Scholar 

  • Savolainen, V., Chase, M.W. et al. 2000. See general references.

    Google Scholar 

  • Soltis, D.E., Soltis, P.S. 1997. Phylogenetic relationships in Saxifragaceae sensu lato: a comparison of topologies based on 18S rDNA and rbcL sequences. Amer. J. Bot. 84:504–522.

    Article  CAS  Google Scholar 

  • Soltis, D.E. et al. 2000. See general references.

    Google Scholar 

  • Stevens, P.F. 2005. See general references.

    Google Scholar 

  • Takhtajan, A. 1997. See general references.

    Google Scholar 

  • Thorne, R.F. 2001. See general references.

    Google Scholar 

  • Tieghem, Ph. van 1898. Structures de quelques ovules et parti qu’on en peut tirer pour améliorer la classification. J. Bot. (Paris) 12:197–220.

    Google Scholar 

  • Tieghem, Ph. van 1901. L’œuf des plantes considéré comme base de leur classification. Ann. Sci. Nat., Bot. VIII, 14:213–390.

    Google Scholar 

  • Walker, J.W. 1974. Aperture evolution in the pollen grains of primitive angiosperms. Amer. J. Bot. 61:1112–1136.

    Article  Google Scholar 

  • Warming, E. 1878. De l’ovule. Ann. Sci. Nat. VI, 5:177–266.

    Google Scholar 

References

  • Corner, E.J.H. 1976. See general references.

    Google Scholar 

  • Hilu, K.W. 2003. See general references.

    Google Scholar 

  • Nandi, O.I. et al. 1998. See general references.

    Google Scholar 

  • Oxelman, B., Yoshikawa, N., McConaughy, B.L., Luo, J., Denton, A.L., Hill, B.D. 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol. Phylog. Evol. 32:462–479.

    Article  CAS  Google Scholar 

  • Savolainen, V., Chase, M.W. et al. 2000. See general references.

    Google Scholar 

  • Savolainen, V., Fay, M.F. et al. 2000. See general references.

    Google Scholar 

  • Soltis, D.E. et al. 2000. See general references.

    Google Scholar 

  • Soltis, D.E. et al. 2003. See general references.

    Google Scholar 

  • Stevens, P.F. 2005. See general references.

    Google Scholar 

  • Takhtajan, A. 1997. See general references.

    Google Scholar 

References

  • Carlquist, S. 2005. Wood anatomy of Krameriaceae with comparisons with Zygophyllaceae: phylesis, ecology and systematics. Bot. J. Linn. Soc. 149:257–270.

    Article  Google Scholar 

  • Savolainen, V., Chase, M.W. et al. 2000. See general references.

    Google Scholar 

  • Soltis, D.E. et al. 2000. See general references.

    Google Scholar 

  • Stevens, P.F. 2005. See general references.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kubitzki, K. (2007). Introduction to the Groups Treated in this Volume. In: Kubitzki, K. (eds) Flowering Plants · Eudicots. The Families and Genera of Vascular Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32219-1_1

Download citation

Publish with us

Policies and ethics