Skip to main content

Behältersieden unterkühlter Flüssigkeiten (Sieden bei freier Konvektion)

  • Chapter
VDI-Wärmeatlas

Part of the book series: VDI Buch ((VDI-BUCH))

  • 2497 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 Literatur

  1. Kirschbaum, E.: Der Verdampfungsvorgang bei Selbstumlauf im senkrechten Rohr. Chemie-Ing.-Tech. 33 (1961) 7, S. 479/484.

    Google Scholar 

  2. Bar-Cohen, A., u. T. W. Simon: Wall superheat excursion in the boiling incipience of dielectric fluids. Heat Transfer Engng. 9 (1988) 3, S. 19/31.

    Google Scholar 

  3. Tong, W., A. Bar-Cohen et al.: Contact angle effects on boiling incipience of highly-wetting liquids. Int. J. Heat Mass Transfer 33 (1990) 1, S. 91/103.

    Google Scholar 

  4. You, S. M., T. W. Simon et al.: Experimental investigation of nucleate boiling incipience with a highly-wetting dielectric fluid (R-113). Int. J. Heat Mass Transfer 33 (1990) 1, S. 105/117.

    Google Scholar 

  5. You, S. M., T. W. Simon u. A. Bar-Cohen: Experiments on boiling incipience with highly-wetting dielectric fluid effects of pressure, subcooling and dissolved gas content. Proc. 9th Int. Heat Transfer Conf., Jerusalem, Aug. 1990, Bd. 2, S. 337/342.

    Google Scholar 

  6. Fujii, T., u. M. Fujii: The dependence of local Nusselt number on Prandtl number in the case of free convection along a vertical surface with uniform heat flux. Int. J. Heat Mass Transfer 19 (1976), S. 121/122.

    Google Scholar 

  7. Lee, S., u. M. M. Yovanovich: Linearization of natural convection from a vertical plate with arbitrary heat-flux distributions. J. Heat Transfer 114 (1992) S. 909/916.

    Google Scholar 

  8. Park, A. K.., u. A. E. Bergles: Natural convection heat transfer characteristics of simulated microelectronic chips. ASME Publication HDT Vol. 48, Heat Transfer in Electronic Equipment (1985) S. 29/37.

    Google Scholar 

  9. Haddad, K. H., u. F. B.. Cheung: Steady-state subcooled nucleate boiling on a downward-facing hemispherical surface. Journal of Heat Transfer, Mai 1998 120, S. 365/370.

    Google Scholar 

  10. Merker, G. P.: Konvektive Wärmeübertragung, Springer-Verlag, 1987.

    Google Scholar 

  11. Gebhard, B., Y. Jaluria et al.: Buoyancy-induced flows and transport. New York, Hemisphere Publishing Corporation, 1988.

    Google Scholar 

  12. Ponter, A. B., u. C. P. Haigh: Sound emission and heat transfer in low pressure pool boiling. Int. J. Heat Mass Transfer 12 (1969) S. 413/428.

    Google Scholar 

  13. Stephan, K.: Wärmeübergang beim Kondensieren und beim Sieden. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  14. Hsu, Y. Y.: On the size range of active nucleation cavities on a heating surface. J. of Heat Transfer 84 (1962), S. 207/213.

    Google Scholar 

  15. Sato, T., u. H. Matsumura: On the conditions of incipient subcooled boiling with forced convection. Bulletin ISME, 7 (1963) 26, S. 392/398.

    Google Scholar 

  16. Davies, E. J., u. G. H. Anderson: The incipience of nucleate boiling in forced convection flow. AIChE J. 12 (1966) 4, S. 774/80.

    Google Scholar 

  17. Kutateladze, S. S.: Hydrodynamische Theorie der Veränderung des Siederegimes von Flüssigkeiten bei freier Konvektion. Izvestia Akademia Nauk SSSR Otd. Tecknic. Nauk 4 (1951), S. 529/536.

    Google Scholar 

  18. Tarasova, N. V., u. V. M. Orlov: Hydrodynamischer Widerstand beim Sieden von Wasser in einem Rohr. Teploenergetika 6 (1962), S. 48/52.

    Google Scholar 

  19. Macbeth, R. V., u. R. W. Wood: Results of a photographic study of subcooled forced-convection boiling of high-pressure water and Freon-12. European Two-Phase Flow Group Meeting. Paper F 1. Univ. Strathclyde, Glasgow 1980.

    Google Scholar 

  20. Papell, S. S., u. R. C. Hendricks: Boiling incipience and convective boiling of neon and nitrogen. Adv. Cryo. Engng. 23 (1977) S. 284/294.

    Google Scholar 

  21. Robertson, J. M.: Boiling heat transfer with liquid nitrogen in brazed-aluminium plate-fin heat exchangers. AlChE Symp. Ser. 189 (1979) S. 151/164.

    Google Scholar 

  22. Toral, H.: Flow boiling heat transfer in mixtures. D. Phil. Thesis, Oxford Univ. 1979.

    Google Scholar 

  23. Butterworth, D.., u. R. A. W. Shock: Flow boiling. Proc. 7th Int. Heat Transfer Conf., München 1982, Band. 1, RK 15, S. 11/30.

    Google Scholar 

  24. Kältemaschinenregeln, 7. Aufl. Karlsruhe: C. F. Müller Verlag 1981.

    Google Scholar 

  25. Abdelmessih, A., A. Fakhri, u. S. T. Yui: Hysteresis effects in incipient boiling of freon-11. Proc. 5th Int. Heat Transfer Conf., Tokio 1974, Band. IV, B 4.5, S.165/169.

    Google Scholar 

  26. Hino, R., u. T. Ueda: Studies on heat transfer and flow characteristics in subcooled flow boiling, Part 1: Boiling characteristics. Int. J. Multiphase Flow 11 (1985) 3, S. 269/281.

    Google Scholar 

  27. Spindler, K., u. E. Hahne: Beitrag zum Siedebeginn beim unterkühlten Sieden mit Zwangskonvektion. CIT 60 (1988) 1, S. 54/55.

    Google Scholar 

  28. Hahne, E., K. Spindler u. N. Shen: Incipience of flow boiling in subcooled well wetting fluids. Proc. 9th Int. Heat Transfer Conf., Jerusalem, Aug. 1990, Bd. 2, S. 69/74.

    Google Scholar 

  29. Bräuer, H., u. F. Mayinger: Subcooled boiling heat transfer to R 12 in an annular vertical channel. Chem. Eng. Technol. 11 (1988) 5, S. 320/327.

    Google Scholar 

  30. Bräuer, H.: Wärmeübergang und Siedebeginn beim unterkühlten Sieden unter Zwangskonvektion. Diss. TU München 1988.

    Google Scholar 

  31. Bräuer, H., F. Mayinger u. G. Stängl: Onset of nucleate boiling, heat transfer, void fraction and pressure drop in subcooled convective boiling with R 12. Proc. 9th Int. Heat Transsfer Conf., Jerusalem, Aug. 1990, Bd. 3, S. 419/424.

    Google Scholar 

  32. Marto, P. J., u. V. J.. Lepère: Pool boiling heat transfer from enhanced surfaces to dielectric fluids. ASME Publication HDT Vol. 48, Heat Transfer in Electronic Equipment (1985) S.93/102.

    Google Scholar 

  33. Murphy, R. W., u. A. E. Bergles: Subcooled flow boiling of fluorocarbons — Hysteresis and dissolved gas effects on heat transfer. Proc. of Heat Transfer and Fluid Mech. Inst., Stanford Univ. Press 1972, S. 400/416.

    Google Scholar 

  34. Fluorinert Electronic Liquids Product Manual, 3 M Comp., St. Paul, Minn. (USA) 1993.

    Google Scholar 

  35. Normington, P. J. C, M. Mahalingam, u. T. Y. T. Lee: Thermal management control without overshoot using combinations of boiling liquids. InterSociety Conf. on Thermal Phenomena, Piscataway, NJ (USA) 1992, S.49/58.

    Google Scholar 

  36. Collier, J. G.: Convective boiling and condensation. 2. Aufl. New York: McGraw-Hill 1981, S.394/426.

    Google Scholar 

  37. Schröder, J. J., S. McGill et al: Secondary nucleation, ambivalent heat transfer and sound emission in low pressure subcooled pool boiling. Proc. Eurotherm Seminar 48 Pool Boiling 2, Paderborn 1996, S.291–299.

    Google Scholar 

  38. Bode, A., K. Kling et al.: Natural alternations in subcooled pool boiling heat transfer. Proc. Convective Flow and Pool Boiling Conf., Kloster Irsee, Mai 1997.

    Google Scholar 

  39. Bode, A., L. Panning u. J. J. Schröder: Growth and collapse of vapor bubbles in subcooled boiling near the region of alternating boiling modes. Proc. Int. Heat Transfer Conf., Kyongju (Korea), Aug. 1998.

    Google Scholar 

  40. Schröder, J. J., u. A. Bode: The influence of subcooling on subcooled pool boiling heat transfer and its acoustic manifestation. Proc. Boiling 2000, Anchorage, Alaska (USA), Mai 2000.

    Google Scholar 

  41. Stephan, K., u. M. Adbelsalam: Heat-transfer correlations for natural convection boiling. Int. J. Heat Mass Transfer 23 (1980) S.73/87.

    Google Scholar 

  42. Kristiansen, H., A. Bjorneklett et al.: Thermal management evaluation of evaporation cooling with fluorcarbon liquids using naked test chips. IEPS Proc. (1990), S. 1133/1146.

    Google Scholar 

  43. Zuber, N., M. Tribus u. J. W. Westwater: Hydrodynamic crisis in pool boiling of saturated and subcooled liquids. Proc. 2nd Int. Heat Transfer Conf., Boulder, CO (USA), 1961, Nr. 27, S. 230/236.

    Google Scholar 

  44. Zuber, N.: On the stability of boiling heat transfer. J.Heat Transfer 80 (1958) S.711/720.

    Google Scholar 

  45. Zuber, N., u. M. Tribus: Further remarks on the stability of boiling heat transfer. UCLA Report. 585, Univ. of Calif., Los Angeles 1958.

    Google Scholar 

  46. Borishanskii, V. M.: An equation generalizing experimental data on the cessation of bubble boiling in a large volume of liquiid. Soviet Physics — Technical Physics 1 (1956) S. 438/442.

    Google Scholar 

  47. Ivey, H. J. u. D. J. Morris: Critical heat flux of saturation and subcooled nucleate pool boiling in water at atmospheric pressure. Proc. 3rd Int. Heat Transfer Conf., Chicago 1966, Bd. III, S. 129/142.

    Google Scholar 

  48. Elkassabgi, Y., u. J. H. Lienhard: Influences of subcooling on burnout of horizontal cylindrical heaters. J. Heat Transfer 110, (1988) S. 479/488.

    Google Scholar 

  49. Labuntsov, D.A., V. V. Yagov u. A. K. Gorodov: Critical heat fluxes in boiling at low pressure region. Proc. 6th Int. Heat Transfer Conf., Toronto 1978, Bd. I, S. 221/225.

    Google Scholar 

  50. Sakurai, A., M. Shiotsu u. K. Hata: Critical heat fluxes of saturated and subcooled boiling in water and in sodium at subatmospheric pressures. Proc. 7th Int. Heat Transfer Conf., München 1982, Bd. IV, S. 345/350.

    Google Scholar 

Download references

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Behältersieden unterkühlter Flüssigkeiten (Sieden bei freier Konvektion). In: VDI-Wärmeatlas. VDI Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32218-4_48

Download citation

Publish with us

Policies and ethics