Skip to main content

Virtualization in Systems Biology: Metamodels and Modeling Languages for Semantic Data Integration

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 3380))

Abstract

We examined the process of virtualization to deal with data intensive problems. Since data integration is a first-order priority in systems biology, we started developing a new method to manipulate data models through ordinary metadata transactions, i.e. by preserving the original data format stored in resources. After discussing why metamodels are made for, and the interplay of modeling languages in metamodel design, we presented a systemic metamodel-driven strategy to integrate semantically heterogeneous data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spring, M.B., Jennings, M.C.: Virtual reality and abstract data: virtualizing information. Virtual Reality World 1(1), c-m (1993)

    Google Scholar 

  2. Moore, R.W.: Integrating Data and Information Management. In: International Supercomputer Conference, Heidelberg (D), June 22-25 (2004)

    Google Scholar 

  3. Auffray, C., Imbeau, S., Roux-Rouquié, M., Hood, L.: C. R. Biologies. From functional genomics to systems biology 326, 879–892 (2003)

    Google Scholar 

  4. http://www.omg.org

  5. Franza, B.R.: From play to laws: Language in Biology. Sci. STKE, pe9 (2004)

    Google Scholar 

  6. Sauro, H., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., Kitano, H.: Omics: A journal of integrative biology  7, 355–372 (2003)

    Google Scholar 

  7. Garvey, T.D., Lincoln, P., Pedersen, C.J., Martin, D., Johnson, M.: Omics: A journal of integrative biology  7, 411–420 (2003)

    Google Scholar 

  8. http://www.cellml.org/public/specification/20021106/index.html

  9. Cook, D.L., Farley, J.F., Tapscott, S.J.: A basis for a visual language for describing, archiving and analyzing functional models of complex biological systems. Genome Biology 2(4) (2001) research0012.1-0012.10

    Google Scholar 

  10. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell 10(8), 2703–2734 (1999)

    Google Scholar 

  11. Pirson, I., Fortemaison, N., jacobs, C., Dremier, S., Dumont, J., Maenhaut, C.: The visual display of regulatory information and networks. Trends Cell Biol. 10(10), 404–408 (2000)

    Article  Google Scholar 

  12. Maimon, R., Browning, S.: Diagramatic Notation and Computational Structure of Gene Networks. In: The Second International Conference on Systems Biology, Pasadena (2001)

    Google Scholar 

  13. Kitano, H.: A Graphical Notation for Biological Networks. BIOSILICO 1, 169–176 (2003)

    Article  Google Scholar 

  14. Schulze-Kremer, S.: Ontologies for Molecular Biology. In: Proc. of 3rd Pacific Symposium on Biocomputing, PSB 1998, pp. 693–704 (1998)

    Google Scholar 

  15. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel- Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet. 25, 25–29 (2000)

    Google Scholar 

  16. Rzhetsky, A., Koike, T., Kalachikov, S., Gomez, S., Krauthammer, M., Kaplan, S., Kra, P., Russo, J., Friedman, C.: A knowledge model for analysis and simulation of regulatory networks. Bioinformatics 16(12), 1120–1128 (2000)

    Article  Google Scholar 

  17. Paton, R.C.: Diagrammatic Representations for Modelling Biological Knowledge. BioSystems 66, 43–53 (2002)

    Article  Google Scholar 

  18. Roux-Rouquié, M., Le Moigne., J.L.: The systemic paradigm and its relevance for modeling biological functions. C. R. Biologies, Special Issue: Model driven Acquisition 325, 419–430 (2002)

    Google Scholar 

  19. Soto., M.: Semantic approach of virtual worlds interoperability. In: Capps, M. (ed.) Proceedings of IEEE WET-ICE 1997, Cambridge, MA. IEEE Press, Los Alamitos (1997)

    Google Scholar 

  20. Regev, A., Shapiro, E.: Cells as computation. Nature 419(6905), 343 (2002)

    Article  Google Scholar 

  21. Roux-Rouquié, M., Renner, J., Sautejeau, G., Rosenthal-Sabroux, C.: Modeling Systems and Processes in Molecular Biology with active objects. In: Objects in bio- and chem-informatics (OiBCI 2002), OMG conference, Washington, USA (2002)

    Google Scholar 

  22. Roux-Rouquié, M., Caritey, N., Gaubert, L., Rosenthal-Sabroux, C.: Using the Unified Modeling Language (UML) to guide systemic description of biological processes and systems Biosystems (2004) (in press)

    Google Scholar 

  23. Kam, N., Irun, R., Cohen, H.D.: The Immune System as a Reactive System: Modeling T Cell Activation With Statecharts. In: IEEE 2001 Symposia on Human Centric Computing Languages and Environments (HCC 2001), Stresa, Italy, September 05-07 (2001)

    Google Scholar 

  24. Spellman, M.P., Troup, C., Sarkans, U., Chevitz, S., Berhnart, D., Sherlock, G., Ball, C., Lepage, M., Swiatek, M., Marks, W.:, Goncalves, J., Markel, S., Iordan, D., Shojatalab, M., Pizarro, A., White, J., Hubley, R., Deutsch, E., Senger, M., Aronow, B., Robinson, A., Bassett, D., Stoeckert Jr., C., Brazma, A.: Genome Biology  3(9) (2002), research0046.1 0046.9

    Google Scholar 

  25. Bader, G.D., Hogue, C.W.V.: BIND-a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16, 465–477 (2000)

    Article  Google Scholar 

  26. Karp, P.D., Riley, M., Paley, S.M., Pellegrini-Toole, A., Krummenacker, M.: Eco- Cyc: Encyclopedia of E. Coli Genes and Metabolism. Nucleic Acid Res. 27, 55–58 (1999)

    Article  Google Scholar 

  27. Hodges, P.E., McKee, A.H.Z., David, B.P., Payne, W.E., Garrels, J.I.: The Yeast Proteome Database (YPD): a Model for the Organization and Presentation of Genome-Wide Funtional Dat. Nucleic Acid Res. 27, 69–73 (1999)

    Article  Google Scholar 

  28. Kaneshisa, M.: A Database for Post-Genome Analysis. Trends genet. 13, 375–376 (1997)

    Article  Google Scholar 

  29. Korenblat, K., Priami, C.: Extraction of Pi-calculus specifications from a UML sequence and state diagrams. DEGAS IST-2001-32072, technical report, #DIT-03-07 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roux-Rouquié, M., Soto, M. (2005). Virtualization in Systems Biology: Metamodels and Modeling Languages for Semantic Data Integration. In: Priami, C. (eds) Transactions on Computational Systems Biology I. Lecture Notes in Computer Science(), vol 3380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32126-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32126-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25422-5

  • Online ISBN: 978-3-540-32126-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics