Advertisement

Automata and Logics for Unranked and Unordered Trees

  • Iovka Boneva
  • Jean-Marc Talbot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3467)

Abstract

In this paper, we consider the monadic second order logic (MSO) and two of its extensions, namely Counting MSO (CMSO) and Presburger MSO (PMSO), interpreted over unranked and unordered trees. We survey classes of tree automata introduced for the logics PMSO and CMSO as well as other related formalisms; we gather results from the literature and sometimes clarify or fill the remaining gaps between those various formalisms. Finally, we complete our study by adapting these classes of automata for capturing precisely the expressiveness of the logic MSO.

Keywords

Atomic Formula Tree Automaton Tree Language Commutative Monoid Algebraic Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carme, J., Niehren, J., Tommasi, M.: Querying Unranked Trees with Stepwise Tree Automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Colcombet, T.: Rewriting in the partial algebra of typed terms modulo AC. Electronic Notes in Theoretical Computer Science, vol. 68. Elsevier Science Publishers, Amsterdam (2002)Google Scholar
  3. 3.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (1997), Available on: http://www.grappa.univ-lille3.fr/tata (release October 1, 2002)
  4. 4.
    Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. IC 85(1), 12–75 (1990)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: The monadic second order logic of graphs VI: on several representations of graphs by relational structures. Discrete Applied Mathematics 54(2-3), 117–149 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B.: Basic notions of universal algebra for language theory and graph grammars. Theoretical Computer Science 163, 1–54 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dal-Zilio, S., Lugiez, D.: XML Schema, Tree Logic and Sheaves Automata. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 246–263. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Dal-Zilio, S., Lugiez, D., Meyssonnier, C.: A logic you can count on. In: 31st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2004)Google Scholar
  9. 9.
    Gaubert, S., Giua, A.: Petri net languages and infinite subsets of Nm. Journal of Computer System Sciences 59(3), 373–391 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Guaiana, G., Restivo, A., Salemi, S.: On Aperiodic Trace Languages. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 76–88. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  11. 11.
    Klaedtke, F., Rueß, H.: Monadic Second-Order Logics with Cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Information and Control 11(2-3), 3–29 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Neven, F., Schwentick, T.: Query automata over finite trees. Theoretical Computer Science 275(1-2), 633–674 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Niehren, J., Podelski, A.: Feature Automata and Recognizable Sets of Feature Trees. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 356–375. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Ohsaki, H.: Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 539–553. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Ohsaki, H., Takai, T.: Decidability and Closure Properties of Equational Tree Languages. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 114–128. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Seidl, H., Schwentick, T., Muscholl, A.: Numerical Document Queries. In: Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 155–166. ACM Press, New York (2003)CrossRefGoogle Scholar
  19. 19.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata with an application to a decision problem of second-order logic. Mathematical System Theory 2, 57–82 (1968)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Verma, K.N.: Two-Way Equational Tree Automata for AC-like Theories: Decidability and Closure Properties. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 180–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Iovka Boneva
    • 1
  • Jean-Marc Talbot
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de LilleUMR CNRS/USTL 8022, INRIA Futurs – MOSTRARE Project 

Personalised recommendations