Skip to main content

A Class of Pareto Archived Evolution Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein Structure Prediction

  • Conference paper
Book cover Applications of Evolutionary Computing (EvoWorkshops 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Included in the following conference series:

Abstract

In this work we investigate the applicability of a multiobjective formulation of the Ab-Initio Protein Structure Prediction (PSP) to medium size protein sequences (46-70 residues). In particular, we introduce a modified version of Pareto Archived Evolution Strategy (PAES) which makes use of immune inspired computing principles and which we will denote by “I-PAES”. Experimental results on the test bed of five proteins from PDB show that PAES, (1+1)-PAES and its modified version I-PAES, are optimal multiobjective optimization algorithms and the introduced mutation operators, mut 1 and mut 2, are effective for the PSP problem. The proposed I-PAES is comparable with other evolutionary algorithms proposed in literature, both in terms of best solution found and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsien, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  Google Scholar 

  2. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring function. J. Mol. Biol. 306, 1191–1199 (1997)

    Article  Google Scholar 

  3. Hansmann, U.H., Okamoto, Y.: Numerical comparisons of three recently proposed algorithms in the protein folding problem. J. Comput. Chem. 18, 920–933 (1997)

    Article  Google Scholar 

  4. Pendersen, J.T., Moult, J.: Protein folding simulations with genetic algorithms and a detailed molecular description. J. Mol. Biol. 169, 240–259 (1997)

    Article  Google Scholar 

  5. Day, R.O., Zydallis, J.B., Lamont, G.B.: Solving the protein structure prediction problem through a multiobjective genetic algorithm. ICNN 2, 32–35 (2001)

    Google Scholar 

  6. Cui, Y., Chen, R.S., Wong, W.H.: Protein Folding Simulation using Genetic Algorithm and Supersecondary Structure Constraints. Proteins: Structure, Function and Genetics 31(3), 247–257 (1998)

    Article  Google Scholar 

  7. Huang Enoch, S., Samudrala, R., Ponder Jay, W.: Ab Initio Folding Prediction of Small Helical Proteins using Distance Geometry and Knowledge-based Scoring Functions. J. Mol. Biol. 290, 267–281 (1999)

    Article  Google Scholar 

  8. Foloppe, N., MacKerell Jr., A.D.: All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. J. Comput. Chem. 21, 86–104 (2000)

    Article  Google Scholar 

  9. Dunbrack Jr., R.L., Cohen, F.E.: Bayesian statistical analysis of protein sidechain rotamer preferences. Protein Science 6, 1661–1681 (1997)

    Article  Google Scholar 

  10. Sun, Z., Jang, B.J.: Patterns and conformations commonly occurring supersecondary structures (basic motifs) in Protein Data Bank. J. Protein Chem. 15, 675–690 (1996)

    Article  Google Scholar 

  11. Sun, Z., Rao, X., Peng, L., Xu, D.: Prediction of protein supersecondary structures based on the artificial neural network method. Protein Eng. 10, 763–769 (1997)

    Article  Google Scholar 

  12. Knowles, J.D., Corne, D.W.: The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multiobjective Optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC 1999), pp. 98–105 (1999)

    Google Scholar 

  13. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computing 8(2), 149–172 (2000)

    Article  Google Scholar 

  14. Cutello, V., Nicosia, G.: The Clonal Selection Principle for in silico and in vitro Computing. In: de Castro, L.N., Von Zuben, F.J. (eds.) Recent Developments in Biologically Inspired Computing (2004)

    Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Computat. 6, 182–197 (2002)

    Article  Google Scholar 

  16. Cooper, L.R., Corne, D.W., Crabbe, M.J.: Use of a novel Hill-climbing genetic algorithm in protein folding simulations. Comp. Bio. Chem. 27, 575–580 (2003)

    Article  Google Scholar 

  17. Dandekar, T., Argos, P.: Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions. J. Mol. Biol. 256, 645–660 (1996)

    Article  Google Scholar 

  18. Plotkin, S.S., Onuchic, J.N.: Understanding protein folding with energy landscape theory. Quarterly Reviews of Biophysics 35(2), 111–167 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cutello, V., Narzisi, G., Nicosia, G. (2005). A Class of Pareto Archived Evolution Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein Structure Prediction. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics