Skip to main content

A Coevolutionary Approach for Clustering with Feature Weighting Application to Image Analysis

  • Conference paper
  • 1517 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Abstract

This paper presents a new process for modular clustering of complex data, such as that used in remote sensing images. This method performs feature weighting in a wrapper approach. The proposed method combines several local specialists, each one extracting one cluster only and using different feature weights. A new clustering quality criterion, adapted to independant clusters, is defined. The weight learning is performed through a cooperative coevolution algorithm, where each species represents one of the clusters to be extracted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howe, N., Cardie, C.: Weighting unusual feature types. Technical Report TR99-1735, Ithaca (1999)

    Google Scholar 

  2. John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 121–129 (1994)

    Google Scholar 

  3. Wettschereck, D., Aha, D.: Weighting features. In: Veloso, M., Aamodt, A. (eds.) First International Conference on Case-Based Reasoning, Research and Development, pp. 347–358. Springer, Berlin (1995)

    Chapter  Google Scholar 

  4. Wettschereck, D., Aha, D., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review 11, 273–314 (1997)

    Article  Google Scholar 

  5. Howe, N., Cardie, C.: Examining locally varying weights for nearest neighbor algorithms. In: ICCBR, pp. 455–466 (1997)

    Google Scholar 

  6. Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern Recognition 34, 567–581 (2004)

    Article  Google Scholar 

  7. Chan, E., Ching, W., Ng, M., Huang, J.: An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition 37, 943–952 (2004)

    Article  MATH  Google Scholar 

  8. Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal processing 83, 825–833 (2003)

    Article  MATH  Google Scholar 

  9. Günter, S., Burke, H.: Validation indices for graph clustering. In: Jolion, J.-M., Kropatsch, W., Vento, M. (eds.) Proc. 3rd IAPR- TC15 Workshop on Graph-based Representations in Pattern Recognition, pp. 229–238 (2001)

    Google Scholar 

  10. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal of Intelligent Information Systems 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  11. Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster validity. Neural Computation 13, 2573–2593 (2001)

    Article  MATH  Google Scholar 

  12. Blansché, A., Gançarski, P.: Application aux images hyperspectrales d’une nouvelle méthode de sélection d’attributs pour la classification d’objets complexes. In: Proc. of workshop Fouille de Données Complexes dans un processus d’extraction de connaissances, in EGC 2004, Clermont-Ferrand, pp. 103–114 (2004)

    Google Scholar 

  13. Potter, M., De Jong, K.: A cooperative coevolutionary approach to function optimization. In: Proceedings of the Third Conference on Parallel Problem Solving from Nature, pp. 249–257 (1994)

    Google Scholar 

  14. Potter, M., De Jong, K., Grefenstette, J.: A coevolutionary approach to learning sequential decision rules. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 366–372 (1995)

    Google Scholar 

  15. Mayer, H.: Symbiotic coevolution of artificial neural networks and training data sets. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 511–520. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  17. Wemmert, C., Gançarski, P., Korczak, J.: An unsupervised collaborative learning method to refine classification hierarchies. In: Proceedings of the IEEE 11th International Conference on Tools with Artificial Intelligence, pp. 263–270 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blansché, A., Gançarski, P., Korczak, J.J. (2005). A Coevolutionary Approach for Clustering with Feature Weighting Application to Image Analysis. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics